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Abstract—Large full frequency band gaps of surface and bulk 

acoustic waves in two-dimensional phononic band structures with 
hollow cylinders are addressed in this paper. It is well-known that 
absolute frequency band gaps are difficultly obtained in a band 
structure consisted of low-acoustic-impedance cylinders in 
high-acoustic-impedance host materials such as PMMA/Ni band 
structures. Phononic band structures with hollow cylinders are 
analyzed and discussed to obtain large full frequency band gaps not 
only for bulk modes but also for surface modes. The tendency of 
absolute frequency band gaps of surface and bulk acoustic waves is 
also addressed by changing the inner radius of hollow cylinders in this 
paper. The technique and this kind of band structure are useful for 
tuning the frequency band gaps and the design of acoustic waveguides. 
 

Keywords—Phononic crystals, Band gap, SAW, BAW.  

I. INTRODUCTION 
HE studies of the photonic crystals[1,2] have led to a 
rapidly growing interest in the analogous acoustic effects 

in phononic crystals or periodic elastic structures. The 
plane-wave expansion (PWE), finite-difference time-domain, 
and multiple-scattering theory are the the well-known methods 
used to analyze the investigations on frequency band gaps of 
bulk acoustic waves (BAW) in composite materials or 
phononic band structures [3-5]. For the PWE method, the 
dispersion relations and the frequency band-gap feathers of the 
transverse and mixed polarization modes have been studied. 
Except for the PWE method, the layered multiple scattering 
theory was applied to study the frequency band gaps of bulk 
acoustic waves in three-dimensional periodic acoustic 
composites and the band structure of a phononic crystal 
consisting of complex and frequency-dependent Lame′ 
coefficients [6-8]. In addition, the finite-difference 
time-domain method was applied to predict exactly the 
transmission properties of slabs of phononic crystals and to 
interpret the experimental data of two-dimensional systems [9]. 
Recently, Sun and Wu[10] investigated and analyzed the mode 
coupling in joined parallel phononic crystal waveguides using 
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the finite-difference time-domain method with periodic 
boundary condition.  

On the other hand, the frequency band-gap features of 
surface modes are studied mainly using PWE method [11-13]. 
Tanaka et al.[11] proposed the theory of surface waves 
propagating in two-dimensional phononic crystals consisting 
of two cubic materials in square lattice, and also explained the 
stop band distribution of the surface, pseudosurface, and bulk 
waves using the PWE method. Recently, Wu et al.[12,13] 
extended the theory to describe the phononic crystals 
consisting of materials with general anisotropy, and Wu and 
Huang[14] discussed the level repulsion of bulk acoustic waves 
in periodic composite materials. For considering the 
piezoelectric materials, Wu et al.[15] and Laude et al.[16] 
conducted the band gaps and electromechanical coupling 
coefficient of a surface acoustic wave in two-dimensional 
phononic band structures. 

As we know, the techniques for tuning frequency band gaps 
of elastic/acoustic waves in phononic crystals are very 
important and they are still the excited research topics in 
physics community. Filling fraction, rotation of noncircular 
rods, different cuts of anisotropic materials, and temperature 
effect were discussed clearly to obtain large frequency band 
gaps of BAW modes in periodic structures. Among the 
literature materials, it is well-known that absolute frequency 
band gaps are difficultly obtained in a band structure consisted 
of low-acoustic-impedance cylinders in 
high-acoustic-impedance host materials such as PMMA/Ni 
band structures. The purpose of this study is to obtain large full 
frequency band gaps not only for bulk modes but also for 
surface modes in a two-dimensional phononic crystal consisted 
of PMMA hollow cylinders in Ni host materials. On the other 
hand, very low frequency band gaps are also discussed in the 
vacuum/Si phononic band structures with hollow cylinders. 
The plane-wave expansion method is adopted in this paper. By 
changing the inner radius of hollow cylinders in the example, 
the frequency band gaps of SAW and BAW are tuned and are 
larger than the same band structure with perfect array of 
circular cylinders. The full and large frequency band gaps of 
SAW modes are the necessary condition for the design of 
acoustic channels. The technique is suitable for obtaining large 
frequency band gaps in the band structures consisted of 
low-acoustic-impedance cylinders in high-acoustic-impedance 
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host materials. 

II. THEORY 
In the following calculations, the formulation based on the 

plane-wave expansion method presented in [12] was adopted. 
A brief introduction of the theory is given in the following. In 
an inhomogeneous linear elastic medium with no body force, 
the equation of motion of the displacement vector ),( tru  can 
be written as 

)],,()([),()( tuCtu mnijmnji rrrr ∂∂=ρ                (1) 

where ),,(),( zyxz == xr  is the position vector, t is the time 
variable; )( rρ , )(rijmnC are the position-dependent mass 

density and elastic stiffness tensor, respectively. In the 
following, we consider a phononic crystal composed of a 
two-dimensional periodic array (x-y plane) of material A, 
embedded in a background material B. Due to the spatial 
periodicity, the material constants, )(xρ  and )(xijmnC  can be 

expanded in Fourier series, with respect to the two-dimensional 
reciprocal lattice vectors (RLVs), ),( 21 GG=G , as 

,)( G
G

xGx ρρ ∑ ⋅= ie                                     (2) 

,)( ijmni
ijmn CeC G

G

xGx ∑ ⋅=                               (3) 

where Gρ  and ijmnCG  are the corresponding Fourier 
coefficients. 

To utilize the Bloch’s theorem and to expand the 
displacement vector ),( tru  in the Fourier series for the 
analyses of the surface and bulk waves, we have 

),(),( zikitii zeeet ∑ ⋅−⋅=
G

G
xGxk Aru ω                    (4) 

where ),( 21 kk=k  is the Bloch wave vector, ω is the circular 

frequency, zk  is the wave vector along the z direction, and AG 
is the amplitude of the displacement vector. We note that as the 
component of the wave vector zk  equals to zero, Eq. (4) 
degenerates into the displacement vector of a bulk acoustic 
wave. On substituting Eqs. (2), (3) and (4) into Eq. (1), and 
after collecting terms systematically, we obtain the generalized 
eigenvalue problem as 

,0)( 2 =++ UCBA zz kk                           (5) 
where A, B, and C are 3n×3n matrices, and are functions of the 
Bloch wave vector k, components of the two-dimensional 
RLV, circular frequency ω, the Fourier coefficients of mass 
density Gρ  and components of elastic stiffness tensor ijmnCG . n 
is the total number of RLV used in the Fourier expansion, and 

TAAA ][ 321
GGGU ′′′=  is the eigenvector. The expressions of 

the matrices A, B, and C were listed in [12]. 
By applying the surface wave conditions and the traction free 

boundary conditions on the surface, the dispersion relation for 
the surface waves propagating in the two-dimensional 

phononic crystals, with both of the filling and background 
materials belonging to the triclinic system, can be obtained. 
When zk  in Eq. (5) is equal to zero, the equation degenerates 
into the eigenvalue problem of the bulk waves as 

.0=CU                                              (6) 
The dispersion relations of the bulk waves propagating in the 

two-dimensional phononic crystals can be obtained by setting 
the determinant of matrix C equal to zero. 

III. BAND STRUCTURES WITH HOLLOW CYLINDERS 
As mentioned in section II, the Fourier coefficients, Gρ  and 
ijmnCG  in Eqs. (2) and (3), can be expressed in the form with the 

so-called structural function FG [12]. The structural functions 
with circular cylinders in phononic crystals are 

0

01 )(2
Gr

GrffJ
F =G . Here, ff is filling fraction, 2

2
2
1 GGG += , 

and J1 is a Bessel function. It should be modified when we 
construct the phononic band structure with hollow cylinders. 
The diagram of the band structure with hollow cylinders is 
shown in Fig. 1. Here, r0 and ri are the outer and inner radii of 
the hollow cylinders in the band structure. Therefore, the 
structural functions with hollow cylinders can be obtained as  

i

ii

Gra
GrJr

Gra
GrJr

F 2
1

2

0
2

01
2

0 )(2)(2 ππ
−=G                     (7) 

for the hollow circular cylinders. Here, a is the lattice constant. 
The left and right diagrams in Fig. 2 show the 3-D and 2-D 
density maps constructed using the structural function with the 
unit cell in real space. The resulting density maps in real space 
are reasonable achievements on the dispersion relations in k 
space. 
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Fig. 1 Phononic band structures with hollow cylinders in a square 
lattice. r0 and ri are the outer and inner radii of hollow cylinders 

A. PMMA/Ni Phononic Band Structures 
Consider the PMMA/Ni phononic band structures forming 

the two-dimensional square lattices with lattice spacing a. Figs. 
3 to 6 show the dispersion relations of the bulk modes along the 
boundaries of the irreducible part of the Brillouin zone with the 
ratios of ri/r0 = 0.1, 0.3, 0.5, and 0.85. It is worth noting that the 
filling fraction is 0.636 for ri =0 and two narrow full band gaps 
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exist in this band structure. In these examples, we used a total 
of 625 RLVs to construct the results and they resulted in a good 
convergence. In the dispersion relations, the diamond symbols 
represent the mixed polarization modes while the solid circles 
represent the transverse polarization modes. When we take the 
ratio ri/r0= 0.1 as shown in Fig. 3, there is only a narrow full 
frequency band gap located at about 3.6 normalized frequency 
in the band structure. The right diagram of Fig. 3 is a sketch 
map for the band structure. However, larger full frequency 
band gaps are investigated when the inner radii ri of the 
cylinders increase to match the ratio ri/r0= 0.3 and 0.5 as shown 
in Figs. 4 and 5, respectively. It is interesting to note that the 
full frequency band gap is smaller when the ratio ri/r0= 0.85 as 
shown in Fig. 6, and begins to disappear as the ratio ri/r0 
approaches 1. This is logical for the two-dimensional phononic 
band structures in which two materials with different acoustic 
impedances are necessary. Fig. 7 shows the frequency 
band-gap variations of the BAW modes in PMMA/Ni phononic 
crystals with hollow cylinders from ri/r0 = 0 to 1. The vertical 
axis is the relative frequency band-gap width (ω2-ω1)/ω0 to 
allow a better judgment of the effect of band structures with 
hollow cylinders. From the calculated results, we clearly 
observe that the full frequency band gap can be enlarged and 
reduced by changing the r0/ri ratio. 

 

 
Fig. 2 Left and right diagrams show the 3-D and 2-D density maps 

constructed by structural function with unit cell in real space 
 

0

1

2

3

4

5

0.5

1.5

2.5

3.5

4.5

N
or

m
al

iz
ed

 F
re

qu
en

cy
 (ω

a/
C

t)

Dispersion relations of BAW modes, 
cylinder: PMMA / base: Ni / ri/r0 = 0.1, RLV=625

Reduced Wave Vector (ka/π)

Γ X M Γ

a

a

r0 
ri r0 / =0.1

 
Fig. 3 Dispersion relations of all bulk modes in PMMA/Ni phononic 

band structures with hollow cylinders and ri/r0 = 0.1. 
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Fig. 4 Dispersion relations of all bulk modes in PMMA/Ni phononic 

band structures with hollow cylinders and ri/r0 = 0.3. 
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Fig. 5 Dispersion relations of all bulk modes in PMMA/Ni phononic 
band structures with hollow cylinders and ri/r0 = 0.5. 

 

0

1

2

3

4

5

0.5

1.5

2.5

3.5

4.5

N
or

m
al

iz
ed

 F
re

qu
en

cy
 (ω

a/
C

t)

Dispersion relations of BAW modes, 
cylinder: PMMA / base: Ni / ri/r0 = 0.85, RLV=625

Reduced Wave Vector (ka/π)

Γ X M Γ

a

a

r0 
ri  

ri / =0.85r0 

 

Fig. 6 Dispersion relations of all bulk modes in PMMA/Ni phononic 
band structures with hollow cylinders and ri/r0 = 0.85. 

The other important point in discussing the band structures 
with hollow cylinders is to obtain large full frequency band 
gaps for all kinds of propagating modes. The existence of the 
large full frequency band gap for the BAW modes in phononic 
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crystals is the necessary condition for obtaining the full 
frequency band gap of the SAW modes. Fig. 8 shows the 
dispersion relations of the SAW modes in PMMA/Ni phononic 
crystals with hollow cylinders and ri/r0 = 0.5. We can obtain a 
large full frequency band gap of the SAW modes in this band 
structure in which the frequency band gap is obtained with 
difficulty in the band structure with perfect arrays of circular 
cylinders. This type of band structure and technique are useful 
for tuning the frequency band gaps and the design of acoustic 
waveguides. 
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Fig. 7 Frequency band-gap variations of BAW modes in PMMA/Ni 
phononic crystals with hollow cylinders and ri/r0 = 0 ~ 1. 
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Fig. 8 Dispersion relations of SAW and BAW modes in PMMA/Ni 
phononic band structures with hollow cylinders and ri/r0 = 0.5. 

B. Vacuum/Si Phononic Band Structures 
Consider the vacuum/Si phononic band structures forming 

the two-dimensional square lattices. The vacuum/Si phononic 
band structures are adopted to get rid of the unexpected 
dispersion curves in the air/Si phononic band structures.16 Fig. 
9 shows the dispersion relations of the bulk modes along the 
boundaries of the irreducible part of the Brillouin zone with the 

ratios of ri/r0 = 0.75. In the dispersion relations, the diamond 
symbols represent the mixed polarization modes while the open 
circles represent the transverse polarization modes. Fig. 10 
shows the enlarge plot of Fig. 9. Different from the results in 
solid/solid phononic band structures with hollow cylinders 
shown in section III-A, a narrow full frequency band gap in 
very low frequency range (about 0.58 normalized frequency) 
exists in the vacuum/solid phononic band structures with 
hollow cylinders. 
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Fig. 9 Dispersion relations of all bulk modes in vacuum/Si phononic 
band structures with hollow cylinders and ri/r0 = 0.75 

0.4

0.5

0.6

0.7

0.8

0.45

0.55

0.65

0.75

N
or

m
al

iz
ed

 F
re

qu
en

cy
 (ω

a/
C

t)

Enlarge plot of Fig. 9

Reduced Wave Vector (ka/π)
Γ X M Γ

 

Fig. 10 Enlarge plot of Fig. 9 

IV. CONCLUSION 
In this paper, we studied the tunable frequency band gaps of 

the surface and bulk acoustic waves in two-dimensional 
phononic band structures with hollow cylinders. The results 
showed that the elastic/acoustic band gaps can be enlarged or 
reduced by changing the inner radius of hollow cylinders in the 
phononic band structures. The full and large frequency band 
gaps of SAW modes are the necessary condition for the design 
of acoustic channels. The technique is suitable for obtaining 
large frequency band gaps in the band structures consisted of 
low-acoustic-impedance cylinders in high-acoustic-impedance 
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host materials. The effect discussed in this paper can be 
potentially utilized for enlarging the phononic band-gap 
frequency and may serve as a basis for studying the frequency 
band gaps of the SAW and BAW modes in phononic band 
structures. 
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