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The Use of Complex Contourlet Transform on
Fusion Scheme

Dipeng Chen, and Qi Li

Abstract—Image fusion aims to enhance the perception
of a scene by combining important information captured by
different sensors. Dual-Tree Complex Wavelet (DT-CWT) has been
thouroughly investigated for image fusion, since it takes advantages
of approximate shift invariance and direction selectivity. But it can
only handle limited direction information. To allow a more flexible
directional expansion for images, we propose a novel fusion scheme,
referred to as complex contourlet transform (CCT). It successfully
incorporates directional filter banks (DFB) into DT-CWT. As a result
it efficiently deal with images containing contours and textures,
whereas it retains the property of shift invariance. Experimental
results demonstrated that the method features high quality fusion
performance and can facilitate many image processing applications.

Keywords—Complex contourlet transform, Complex wavelet
transform, Fusion.

I. I NTRODUCTION

FUSION scheme has been explored in a wide range of research
fields, including computer vision, automatic object detection,

parallel and distributed processing, and robotics remote sensing. In
general a successful fusion should extract complete information from
source images into the result, without introducing any artifacts or
inconsistencies. Many algorithms developed so far can be classified
into three primary categories:spatial-domain, transform-domainand
optimization methods, as illustrated in Figure 1.

 


Spatial 


Domain
 


Transform 
    


Domain
 


PCA
 
 Averaging
 
 Weighted 


Averaging
 


Multi
-
resolution 


decomposition
 


Optimization 


Appro
ach
 


Bayesian
 


Pixel
-
level Fusio
n 


Techniques
 


Fig. 1. The classification of pixel-to-pixel based image fusion methods

Primitive fusion schemes, such as averaging, weighted averaging
and global Principal-Component-Analysis (PCA), are performed
solely in the spatial domain. In spite of easy implementation,
these methods pay the expenses of reducing the contrast and
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distorting the spectral characteristics [1]. To solve these problems,
some more sophisticated fusions in the transform domain gather
tools like multi-resolution decomposition (MR). It decomposes
images at different scale to several components, which account
for important salient features of images [1]. Therefore it enables
a better performance than those performed in the spatial domain.
On the other hand, methods in the third category utilizes Bayesian
optimization to find the fused image, however, it suffers from a
significant increase of computational complexity [2-3].

In this paper, we confine our discussion to MR approaches;
motivated by the fact that the human visual system is primarily
sensitive to local contrast changes, i.e. edges. Assume a source
image is decomposed with perfect reconstruction [1] to several
sub-parts byoperator T{·}, a fusion rule is then applied onto
each sub-part to construct a combined representation, and a fused
image is finally obtained by performing the inverse decomposition
processT{·}−1. Wavelet is a well-known choice of the transform
T{·} for fusion. It is, however, not suited for the application with
mis-registration, due to the severe problem of shift dependence.
As an alternative, DT-CWT scheme [8] provides the approximate
shift invariance which the traditional wavelet transform is short
of. But it also suffers from the drawback of limited directional
information, and takes into account no correlation of significant
wavelet coefficient along the discontinuity curve. As a result a poor
representation of edges is produced, particularly when images have
contours and curves.

Hence, a new transformComplex Contourlet transformis pro-
posed, which incorporates the DT-CWT and DFB to provide a
flexible and robust scale-direction representation for source images.
Specifically the flexibility allows arbitrary number of directions at any
scale, which can help to capture most important salient information in
images, i.e. edges. Whereas the robustness refers to a shift-invariance
of the proposed method that could yield a fusion free of aliasing.
CCT is therefore well-suited to image fusion scheme, as it provides
simultaneous better directional sensitivity and shift invariance.

The organization of rest of the paper is as follows. Section II
describes the preliminary analysis of the CCT for image fusion. A
new fusion scheme using CCT is subsequently proposed in Section
III. Following that, experimental results of the proposed method, in
both visual and quantity aspects, are compared to the other traditional
methods in Section IV. Section V presents the conclusions.

II. T HE COMPLEX CONTOURLET TRANSFORM

A. Algorithm

The complex contourlet transform consists of two subsequent
stages. Firstly we allow a complex dual-tree wavelet decomposition,
in contrast to the critically sampled DWT used in [12], and Laplacian
Pyramid used in [4]. After applying DT-CWT decomposition, the
detail subspaceWj at the scale2j contains a structure of dual-trees,
and thus gives rise to six subbands, formulated as follows, rather than
conventional LH, HL and HH subbands, indexed byi ∈ {1, 2, 3}.

{γi
m,u,v(t)}m,t∈Z2 (1)



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:12, 2007

3970

i ∈ {1, 2, 3} andu ∈ {1, 2} reveals where the coefficient at location
index t originates from. The six subbands at each scale capture
distinct directions, whereas each of them has two wavelets, specified
by v ∈ {1, 2} as real and complex part of wavelet coefficients.m
denotes a location shift. The detail subspaceWj is turned into an
approximate shift invariance [8] by averaging outputs of dual trees.

However, these subbands with fixed orientation are still not
enough. The solution is to apply thelj levels’ DFB to each multiscale
detail spaceWj , and the subbands hence can be expanded to the
number of2lj , as defined in the following mathematical form:

µ
i,lj
k,n,u,v(t) =

∑
m∈Z2

g
lj
k [m − S

lj
k n]γi

m,u,v(t) i = 1, 2, 3 (2)

It is easy to see thatµ
i,lj
k,n,u,v(·) represents a family of directional

subspaceW
lj
j,k at the scale2j and a decomposition directionk =

1...2lj . In addition, g
(lj)

k (·) expresses the impulse response of the
synthesis filter, and its translated version over the sampling lattices
Slj

k is denoted byg
lj
k [m − S

lj
k n].

In this case, each directional subspaceW
lj
j,k consists of a complex

double tree like frame with many more flexible directions thanWj of
DT-CWT. We refer to this kind of transform as Complex Contourlet
Transform (CCT). Obviously it is a better choice for fusion scheme
than DT-CWT, as the former can extract more directions from images
and produce a better representation of local features, such as smooth
edges.

B. Shift Dependence of the Algorithm
Concerning the particular importance of shift invariance for fusion,

it is necessary at this stage to explore the robustness of CCT.
Wj of DT-CWT is nearly shift invariant [2], and this property

can be still established in the subspaceWj,k, even after applying
directional filter banks on detail subspaceWj . We denote the scaling
function at the scale of2jbefore the processing of DFB as follows:

γi
m,u,v(t) = 2−jγi(

t − 2jm
2j

) t, m ∈ Z2 and i = 1, 2, 3 (3)

A small shift in pixel locationsm′ gives the following relationship:

γi
m+m′,u,v(t) = γi

m,u,v(t − 2jm′) i = 1, 2, 3 (4)

Therefore, the subbands of CCT are derived by direct substitutions:

µ
i,lj
m,u,v(t) =

∑
m∈Z2

g
lj
k [m − S

lj
k n]γi

m,u,v(t) (5)

=
∑

m∈Z2

g
lj
k [m]γi

m,u,v(t − 2jS
lj
k n) = µ

i,lj
m,u,v(t − 2jS

lj
k n) (6)

As a result the subspacesW
lj
j,k are established to satisfy the property

of the shift invariance, since they are generated by a single function
and its translations [4-5].

f(t) ∈ W
lj
j,k ⇔ f(t − 2jS

lj
k,j) ∈ W

lj
j,k t ∈ Z2 (7)

Moreover, the proposed method guarantees perfect reconstructiondue
to that both DT-CWT and DFB are. This means the input image can
be therefore reconstructed by corresponding subband images without
loosing any important information.

Figure 2 demonstrates the complete procedure of the CCT, which
uses the complex wavelet to capture as much as salient information
as possible , followed by a directional filter bank to group those
locally correlated coefficients into smooth structures. Unlike the other
wavelet transform, CCT allows for at each scale arbitrary directions,
as well as approximate shift invariance. Therefore it could efficiently
facilitate the fusion of geometric (spatial) and thematic (spectral)
features from source images, in particular it sharpens contours and
smooth edges.
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Fig. 2. The procedure of the complex contourlet transform (CCT)

III. T HE CCT FUSION SCHEME

Similar to the wavelet-based fusion, the CCT based fusion consists
of three stages. The first stage provides a sub-band and directional
decomposition by applying the proposed transform. It is followed by
applying various fusion rules onto the transform coefficients at the
second stage. A simple and effective one, we used in this paper,
choose the complex coefficients with maximum magnitudes. The
choosing-maximum scheme is a popular choice as we tend to pick
out the salient features of an image, e.g. edges and boundaries. The
complete fusion schemes ends with the inverse complex contourlet
transform, as shown in Figure 3.
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Fig. 3. The proposed fusion scheme using complex contourlet transform

IV. EXPERIMENTAL STUDY AND ANALYSIS

Visual and quantitative comparisons are two major means to
evaluate the quality of distinct fusion schemes. In this section, we
compare the proposed method with the other conventional ones
in terms of both visual and quantitative measurements, under the
assumption of all the sources images are geometrically registered to
each other.
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A. Visual Analysis
Quality assessment of our proposed algorithm is first carried out

by the visual inspection, under the assumption that all the source
images are registered. In Figure 4 (c-f), we display all the fusion
results obtained by applying principle component analysis (PCA),
shift invariant discrete wavelet transform (SI-DWT), DT-CWT and
CCT respectively. It was observed that Figure 4 (d), fused by SI-
DWT, is closest to the original visual image, as shown in Figure 4
(a) , but farthest to the multi-spectral image in Figure 4 (b). On
the contrary, Figure 4 (c) illustrates a considerable spatial distortion
present in the PCA based fusion, although the spectral information
is well retained. In contrast to Figure 4 (c) and (d), the fusions
obtained by the DT-CWT and CCT transform have both high spatial
resolution, similar with the Figure 4 (a), and same rich spectral
information as the Figure 4 (b). Moreover, the proposed fusion
Figure 4 (e) reveals slightly more enriched geometric structure and
less disturbing artifacts than DT-CWT based fusion. Hence in terms of
visual interpretation, the fused image obtained by CCT-based fusion
is optimal for a better visual effect, such as contrast enhancement
around edges.

As it is recognized, visual comparison is not sufficient to reveal
the exact potential of the fusion method [9]. Therefore, statistical
comparison is attempted to further evaluate the fusion results. It is
believed that such a comparison in the next section would accurately
assess the quality of the fused image.

B. Quantitative Measurements
The CCT transform that we used in our experiments decomposes

an image into 5 levels using the 9-7 biorthogonal Daubechies
(wavelet) transform, where each sub-band at each level is fed to the
directional banks stage with eight directions at the finest level. In the
DFB stage, we use the 23-45 biorthogonal quincunx filters designed
by [16] and modulate them to obtain the biorthogonal fan filters. For
comparison, we implemented in a similar fashion as in the visual
assessment, a PCA based fusion, SIDWT based fusion and DT-CWT
based fusion , which are decomposed to 5 levels.

Several objective quantitative assessments [10] were considered for
assessing the spectral and spatial quality of the fused images. Most
conventional objective assessments require a ground-truth imagef as
a reference, such asCorrelation Coefficient (CC)that are widely used
in many disparate applications. However, due to the lack of ground
truth in practice, a more reliable and flexible choice is to use the
Mean Gradient (MG), Average Value (AV), as presented in [6,13-15].

1) Thecorrelation coefficient (CC)is defined as

Corr(f, f̂) =

∑
m,n

(fmn − f)(f̂mn − f̂)√
(
∑

m,n
(fmn − f)2)(

∑
m,n

(f̂mn − f̂)2)
(8)

where f̂ is the fused image, andf and f̂ stand for the
mean of the original and fused image. Correlation coefficient
ranging from -1 to +1 indicates the amount of spectral content
preserved in the fused image [9]. Larger correlation coefficients
illustrate that more spectral content in the fused image is
similar to the initial multi-spectral image.

2) On the other hand, the mathematical definition ofmean gra-
dient (MG) is :

MG(f̂) =
1

MN

M∑
i=1

M∑
j=1

√
(∆I2

x + I2
y)/2 (9)

∆Ix;i,j = f(i+1, j)− f(i, j), ∆Ix;i,j = f(i, j +1)− f(i, j)
where M and N are the pixel number of an imagef in the
row and column respectively. MG of the fused image simply
reflects the contrast between the detailed variation of patter on
the image and clarity of the image [11-15].

Besides,average (AV)is also a sound indicator for spatial resolution.

Table I presents the experimental results using the PCA based
fusion, DT-CWT based fusion and CCT transform based fusion
schemes, in terms of the mean gradient, correlation coefficient and
average values.

TABLE I

PERFORMANCECOMPARISON FOR THEPCA, SIDWT, DT-CWTAND

CCT FUSION METHODS

Methods MG CC AV
visual image N/A N/A 80.2766

multispectral image N/A N/A 77.7234
PCA 724.6968 0.8446 78.6876

SIDWT 1091 0.8803 79.0012
DT − DWT 1147.9 0.8952 80.1860

CCT 1147.9 0.9166 80.2766

It is evident to see from the Table I that the resulting image from
CCT based fusion has better spectral quality than the other methods,
in terms of the higher values of correlation coefficient and mean
gradient. As far as the spatial resolution is concerned, the average
value of the proposed method is same as the spectral image, while DT-
CWT based fusion is the next best. Thus the result obtained by CCT
based fusion has the identical grayscale distributions to the original
visual image. Whereas, its geometric quality is better than the others
obtained by conventinal schemes, in terms of a better representation
of edges and contours is yielded. The conclusion accords with our
observation in Figure 5 between high-pass filter outputs of fused
images. The highest value of correlation coefficient0.8644 in this
case indicates that most geometric details are enhanced in the image
fused by CCT transform.

As it could be seen from the preceding experimental results, CCT
based fusion approach is the optimum and most well-suited to remote
sensing application, in terms of the spectral and spatial quality.

V. SUMMARY AND CONCLUSIONS

In this work, we have propsed acomplex contourlet transform
for image fusion. The motivation to apply the new transform is
that it provides a flexible and shift-invariant sparse expansion of
image, which enables both high spatial and spectral resolutions.
After presenting a comparison of fused images obtained by the PCA,
SIDWT, DT-CWT and CCT, it is concluded that the proposed method
outperforms the other complex wavelet based methods and PCA
based method. It can well adapt to the application of fusing remote
sensing images, e.g. IKONS, SPOT, Landsman.
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(c) Image fused by Principal Component Analysis
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(d) Image fused by Shift-invariant Discrete Wavelet
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(f) Image fused by Complex Contourlet Transform

Fig. 4. Performance comparison of fusing the remote sensing images using four different methods including PCA, SIDWT, DT-CWT and CCT
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(c) High-pass image fused by Principal Component
Analysis with correlation coefficient equal to 0.8493
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(d) High-pass image fused by Shift-invariant Discrete
Wavelet Transform with correlation coefficient equal to
0.8626
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(e) High-pass image fused by Dual-tree Complex
Wavelet Transform with correlation coefficient equal to
0.8637
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(f) High-pass image fused by Complex Contourlet
Transform with correlation coefficient equal to0.8644

Fig. 5. Comparison of high pass filtered image after fusing remote sensing images using four different methods including PCA, SIDWT, DT-CWT and CCT


