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Bifurcations and Chaotic Solutions of
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Abstract—We study bifurcation structure of the zonal jet flow the
streamfunction of which is expressed by a single spherical harmonics
on a rotating sphere. In the non-rotating case, we find that a steady
traveling wave solution arises from the zonal jet flow through Hopf
bifurcation. As the Reynolds number increases, several traveling
solutions arise only through the pitchfork bifurcations and at high
Reynolds number the bifurcating solutions become Hopf unstable. In
the rotating case, on the other hand, under the stabilizing effect of
rotation, as the absolute value of rotation rate increases, the number
of the bifurcating solutions arising from the zonal jet flow decreases
monotonically. We also carry out time integration to study unsteady
solutions at high Reynolds number and find that in the non-rotating
case the unsteady solutions are chaotic, while not in the rotating cases
calculated. This result reflects the general tendency that the rotation
stabilizes nonlinear solutions of Navier-Stokes equations.

Keywords—rotating sphere, two-dimensional flow, bifurcation
structure

I. INTRODUCTION

IN planetary atmospheres in Jupiter or Saturn, for example,
strong zonal jets have been observed. The two-dimensional

incompressible Navier-Stokes flow on a rotating sphere has
been considered to be one of the simplest and most fun-
damental models of the atmospheric motions, and attracts
many researchers’ interests. In this model, non-dimensional
parameters determining the dynamics are the Reynolds num-
ber and the Rossby number (inverse of the non-dimensional
rotating rate of the sphere). In general, as the Reynolds number
increases, a fluid motion becomes turbulent and the Reynolds
number of the planetary atmospheres is quite huge, the two-
dimensional Navier-Stokes turbulence on a rotating sphere has
been studied.

Numerical time integrations of the two-dimensional Navier-
Stokes turbulence on a rotating sphere was first performed
by Williams [1], who investigated the forced two-dimensional
turbulence on a rotating sphere under a symmetry assumption
of the flow field, and found that zonal jet flows, similar to those
of Jovian atmospheres, emerges in a turbulent flow field. His
results raised an expectation that the forced two-dimensional
flow on a rotating sphere can be a fundamental model to the
planetary atmospheres. However, his computational domain
was restricted to 1/16 of the entire sphere under the assump-
tions of a longitudinal periodicity and the equatorial symmetry.
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Later Yoden and Yamada [2] first studied the asymptotic states
of freely decaying two-dimensional turbulence on a rotating
sphere with no assumption on the flow field, and showed that
circumpolar west-ward strong jets emerge along with multiple
weak jets at the low and middle latitudes. Further Takehiro et
al. [3] showed that as the rotation rate Ω increases, the width
of the circumpolar west-ward jets decreases as Ω−1/4 and the
velocity of the jets increases as Ω1/4.

As for the forced turbulence, Nozawa and Yoden [4] per-
formed the numerical time integration with Markovian random
forcing, and found that at the final stage of their computation,
the flow field consists of multiple zonal jet flow and/or west-
ward circumpolar jets, depending on the rotation rate and
the forcing wavenumber. However, recently, Obuse et al. [5]
re-calculated the same problem as Nozawa and Yoden with
the numerical integration time being more than 100 times of
that of Nozawa and Yoden, and found that at an early stage
of the time integration, the multiple zonal jet flows and the
circumpolar jets are observed, but as time goes on, the zonal
jets merge with each other, and at the final stage of the time
integration, only two or three broad zonal jets are left in the
flow field. The surviving broad jets are found to be quite stable
to disturbance even in the ambient turbulent flows.

On the stability of the zonal jet flows, Baines [6] studied
the inviscid linear stability of the typical zonal jet flows, the
streamfunction of which is expressed by a single spherical
harmonics Y 0

l , as well as the inviscid Rossby wave solutions.
He solved the eigenvalue problem numerically using the
spectral method by the spherical harmonics with the truncation
wavenumber up to 20. The inflection-point theorem says that
the zonal jet is stabilized when the rotation rate is large
enough. Therefore the zonal flow has the critical rotation
rate at which the zonal jets obtain the stability. He obtained
numerically the critical rotation rate of the zonal flows, and
found that the critical rotation rates are only slightly different
from the estimates obtained from the inflection-point theorem.
The numerical calculation of the stability eigenvalues by
Baines [6] was significantly challenging at the time prior to the
major advance of computational environment, and the obtained
values have been frequently employed by many researchers.
Recently Sasaki et al. [7] however restudied the stability prob-
lem as Baines [6], and found that the numerical calculation of
the linear stability studied by Baines is difficult even at present
because of an emergence of singularities, so-called critical
layers. They re-examined the linear stability of the zonal
jet flows with a special attention to the numerical methods
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for some eigenvalues and corrected the critical rotation rates
obtained by Baines [6] up to ∼ 20%.

In the viscous flow cases, Sasaki et al. [8] studied the linear
stability of the viscous zonal jet flows. They found that, at the
the critical Reynolds number where the zonal jet flow loses
the stability, the zonal jet flow becomes Hopf unstable and the
critical longitudinal wavenumber is 2 in the non-rotating case.
They found that, when the rotation rate increases, the critical
Reynolds number of the zonal jet flows increases rapidly, and
at high Reynolds number the unstable region of the rotation
rate is larger than that for the inviscid zonal flow, and the
former does not converge to the latter even in the inviscid limit.
This seeming contradiction between the inviscid limit and the
inviscid cases is resolved by an observation that the growth
rates of the unstable modes converge to zero in the regions
of the rotation rate where the viscous zonal flow is unstable
but the inviscid zonal flow is stable as the Reynolds number
increases. They also discussed the stability of the resultant
turbulent zonal flow observed by Obuse et al. [5] in the linear
framework of the laminar flow.

In this paper we study the bifurcation structure arising
from the viscous zonal jet flow as the further problem of the
linear stability studied by Sasaki, Takehiro and Yamada [8] on
the point of the research on nonlinear solutions arising from
the viscous zonal flow after the zonal flow becomes linearly
unstable.

The stability and bifurcation problem of the viscous zonal
flow is formulated by introducing a forcing term, which
consists of a single spherical harmonics, to balance with the
viscous dissipation term to keep the zonal flow steady (see
also [8]). This problem setting is similar to the Kolmogorov
problem which has been considered as a typical and funda-
mental example to get insight into the solution properties of
the Navier-Stokes equations. On the Kolmogorov problem the
flow field is governed by the two-dimensional incompressible
Navier-Stokes equations with a sine type external forcing on
a double-periodic domain, flat torus. In our case, on the other
hand, the problem is formulated on a two-dimensional sphere,
and with the forcing term consisting of a single spherical
harmonics function which is an eigenfunction of the Laplacian
similar to that of the Kolmogorov problem. Both the problems
are formulated on a two-dimensional boundary-less compact
manifold with the forcing of the single eigenfunction of
Laplacian on each manifold, and are quite similar to each
other with a difference in the topology of the flow domain
(genus 0 for the sphere, and genus 1 for the torus).

For the Kolmogorov problem, Iudovichi [9] proved that
the two-jet parallel flow on a vertically long flat torus is
globally asymptotic stable at an arbitrary Reynolds number,
and Meshalkin and Sinai [10] proved that the critical modes
of the parallel flows are steady (not Hopf), while Iudovich [9]
proved the existence of the bifurcation solution arising at the
critical stability of the parallel flow. The bifurcation diagram of
steady solutions arising from the 2-jet parallel flow was studied
by Okamoto and Shōji [11] for several aspect ratios of the flat
torus. They found a pitchfork bifurcation arising from the 2-jet
parallel flow and also found that as the aspect ratio changes,
there appear several types of bifurcations including the saddle-

node bifurcation, Hopf bifurcation and the secondary bifurca-
tion. Kim and Okamoto[12] studied the inviscid limit of the
steady solutions arising from the 4- and 6-jet parallel flows.
In each case the first and the second branches arise through
the pitchfork bifurcations, and they found that the flow field
of the bifurcating steady solutions consists of multiple vor-
tices around the bifurcation points. However, as the Reynolds
number increases along the branches, smaller vortices merge
into larger vortices, and the flow field becomes dominated
only by one pair of a negative and a positive vortices at
high Reynolds number. They called this solution the unimodal
solution, and suggested that at high Reynolds number there is
at least one steady unimodal solution independently of the
value of the number of jets of the original parallel flows.
Similar phenomena were found also by Okamoto and Shōji
[11]. We add that the simplicity of the Kolmogorov problem
drives other researches on dynamical system properties such as
routes to turbulence [13] and the orbital instability of chaotic
flows [14].

In the following, we discuss the bifurcation structure of the
zonal jet flows on a rotating sphere and unsteady solutions at
high Reynolds number. This paper is constructed as below. In
section II, the governing equation is presented. The bifurcation
structure of zonal jet flows is discussed in section III. In section
IV we discuss unsteady solutions at high Reynolds number.
Discussion and conclusion follow in section V.

II. GOVERNING EQUATIONS

We consider the two-dimensional incompressible Navier-
Stokes flows on a rotating sphere governed by the vorticity
equation

∂Δψ

∂t
+ J(ψ,Δψ) + 2Ω

∂ψ

∂λ

=
1

R

{
(Δ + 2)Δψ + (l(l + 1)− 2)Y 0

l (μ)
}
, (1)

where quantities are made non-dimensional and the radius of
the sphere is unity. Here t is the time, λ and μ the longitude
and the sine latitude μ = sinφ where φ is the latitude, ψ
the streamfunction and Δψ = ζ the vorticity, where Δ is
the horizontal Laplacian on the unit sphere. The longitudinal
and latitudinal components of velocity (uλ, uμ) are given by
uλ = −

√
1− μ2(∂ψ/∂μ) and uμ = 1/

√
1− μ2(∂ψ/∂λ),

respectively. R and Ω are the Reynolds number and a
non-dimensional rotation rate of the sphere, respectively,
J(A,B) := (∂A/∂λ)(∂B/∂μ) − (∂A/∂μ)(∂B/∂λ) the Ja-
cobian and (l(l+1)− 2)Y 0

l (μ)/R the vorticity forcing where
Y m
l (λ, μ) is a 4π-normalized spherical harmonics with the

total wavenumber l and the longitudinal wavenumber m. The
term of 2Δψ/R in the viscosity term is necessary for the
conservation of the total angular momentum of the system
[15].

The vorticity equation (1) has a steady l-jet zonal flow
solution for any Reynolds number and any rotation rate,
expressed by

ψ0(μ) = − 1

l(l + 1)
Y 0
l (μ), ζ0(μ) = Y 0

l (μ), (2)
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Fig. 1. The longitudinal velocity of the trivial solution. The horizontal and
vertical axes indicate the longitudinal velocity and the latitude, respectively.

Here, the number of jets is defined as the number of extreme
points of the longitudinal velocity, which is equivalent to
the number of nodes of the latitudinal distribution of the
streamfunction. We note that on the Kolmogorov problem
the two-dimensional Navier-Stokes flow on a flat torus is
driven by the vorticity forcing n2 cosny/R and has a 2n-jet
parallel flow solution the streamfunction of which is expressed
by − cos(ny)/n2. The trigonometric function cosny is the
eigenfunction of Laplacian on the flat torus while the spherical
harmonics Y 0

l (μ) is the eigenfunction of Laplacian on the
sphere. Thus this problem setting is similar to the Kolmogorov
problem.

III. BIFURCATION STRUCTURE OF THE ZONAL JET FLOW

The 1-jet zonal flow (l = 1) corresponds to the conservation
of the total angular velocity and the 2-jet zonal flow (l = 2) is
globally asymptotic stable at arbitrary Reynolds number and
rotation rate proved by Sasaki, Takehiro and Yamada [16]. The
linear stability of the 3-jet zonal flow (l = 3) is studied by
Sasaki, Takehiro and Yamada [8], and they found that at high
Reynolds number the 3-jet zonal flow is Hopf unstable in the
interval −5.727 < Ω < 2.171. In this section, we show the
bifurcation structure arising from the the 3-jet zonal flow in
the interval of 1 ≤ R ≤ 103 and in the case of Ω = 0.0,±0.5.
As below we call the 3-jet zonal flow the trivial solution. Fig.
1 shows the longitudinal velocity of the trivial solution.

In order to solve the problem numerically, we use the
spectral method by the spherical harmonics and assume that
the streamfunction ψ is expressed by

ψ(λ, μ) =
N∑

n=1

n∑
m=−n

ψm
n Y

m
n (λ, μ),

where ψm
n is the expansion coefficient and N is the truncation

wavenumber. We adopt the transform method to evaluate the
nonlinear term of the equation (1), with, in the physical space,
the number of the longitudinal and latitudinal grid points I
and J satisfying I ≥ 3N + 1 and J > 3N/2 eliminating
aliasing errors. We seek to nonlinear steady solutions using

the Newton method. The stopping condition of the Newton
method is that the maximum absolute value of correction of
the real/imaginary part of the spectral components is less than
10−8 with checking the accuracy by changing the truncation
wavenumber up to N = 106.

A. Bifurcation diagram in the non-rotating case

The nonlinear steady solutions arising from the trivial solu-
tion are Traveling Wave solutions thought the Hopf bifurcation
at the critical Reynolds number of the trivial solution where
the trivial solution becomes Hopf unstable. Furthermore, we
find that all bifurcating steady solutions are traveling wave
solutions. Therefore we call these solutions as TW with serial
characters.

We find that TW1 (m = 2) bifurcates from the trivial
solution at R = 26.123 through the super-critical Hopf bi-
furcation. Fig. 2 shows the bifurcation diagram. Tracing TW1
branch, we find two secondary pitchfork bifurcation points at
R = 70.66 and 203.8. At R = 70.66, where TW1 losses
the linearly stability, TW2-N and TW2-S bifurcate though the
pitchfork bifurcation. We find that TW2-N has two negative
vortices at the mid-latitudes in the northern hemisphere while
TW2-S has two positive vortices at the mid latitudes in the
southern hemisphere. The flow field of TW2-N and TW2-S is
antisymmetric with respect to the equator. Notice that -N and
-S indicate the hemisphere where the solution has large vor-
tices. As the Reynolds number increases, TW2-N and TW2-S
become Hopf unstable at R = 103.2. On TW1 branch we find
that, as the Reynolds number increases, TW1 recovers linearly
stable again at R = 203.8 where TW3-N and TW3-S bifurcate
through the pitchfork bifurcation. We confirm that TW3-N and
TW3-S are Hopf unstable for the interval of 203.8 ≤ R ≤ 103.
As the Reynolds number further increases, TW1 becomes
Hopf unstable again at R = 249.4. On the trivial solution
we find that TW4 (m = 1) bifurcates at R = 62.51 through
Hopf bifurcation, and confirm that TW4 is Hopf unstable for
the interval of 62.5 ≤ R ≤ 103. On TW4 branch, we find
that TW5-N and TW5-S bifurcate at R = 136.2 through the
pitchfork bifurcation, and TW5-N and -S are Hopf unstable
except for the interval of 143.5 ≤ R ≤ 161.9, both ends
of which are considered to be associated with bifurcations of
time-periodic solutions.

All secondary bifurcation points in our computation are
pitchfork and all the steady/steady traveling solutions (where
the steady solution means the trivial solution) become Hopf
unstable until at R = 249.4. Finally we note that, as the
Reynolds number increases, the absolute value of phase veloc-
ity of the steady traveling solutions decreases monotonically.

B. Bifurcation diagram in the rotating case

Fig. 3 shows the bifurcation diagram in the case of Ω =
−0.5. We find that as the Reynolds number increases the trivial
solution becomes Hopf unstable at R = 26.58 where TW1
(m = 2) bifurcates through the super-critical Hopf bifurcation.
As the Reynolds number further increases TW1 becomes Hopf
unstable at R = 81.08. On the trivial solution we find another
Hopf bifurcation point at R = 48.15 where TW4 (m = 1)
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Fig. 2. Bifurcation diagram of the steady/steady traveling solutions in
the non-rotating case, Ω = 0. The blue asterisks and red crosses denote
that the solutions are linearly stable and linearly unstable, respectively. The
horizontal and vertical axes indicate the Reynolds number and −6ψ0

2−12ψ0
3 ,

respectively.

Fig. 3. Same as Fig. 2 but in the case of Ω = −0.5. The horizontal and
vertical axes indicate the Reynolds number and −6ψ0

2 − 12ψ0
3 , respectively.

bifurcates. We confirm that TW4 is Hopf unstable for the
interval of 48.15 ≤ R ≤ 103. On TW4 branch we find
that TW5-N and TW5-S bifurcate at R = 98.57 though the
pitchfork bifurcation and confirm that TW5-N and TW5-S are
Hopf unstable for the interval of 98.57 ≤ R ≤ 103.

Fig. 4 shows the bifurcation diagram in the case of Ω =
0.5. We find that as the Reynolds number increases the trivial
solution becomes Hopf unstable at R = 27.35 where TW1
bifurcates through the super-critical Hopf bifurcation. Tracing
TW1 branch, we find that TW1 becomes Hopf unstable at
R = 60.16, and a pitchfork bifurcation point at R = 63.46
where TW2-N and TW2-S bifurcate. We confirm that TW2-
N and TW2-S are Hopf unstable except for the interval of
64.918 ≤ R ≤ 85.036. On the trivial solution we find another
Hopf bifurcation point at R = 113.7 where TW4 bifurcates
and confirm that TW4 is also Hopf unstable for the interval of
113.7 ≤ R ≤ 103. As the Reynolds number further increases
we find that TW5-N and TW5-S bifurcate from TW4 at R =

Fig. 4. Same as Fig. 2 , but in the case of Ω = 0.5. The horizontal and
vertical axes indicate the Reynolds number and −12ψ0

2 −12ψ0
3 , respectively.

983.6 through the pitchfork bifurcation and TW5-N and TW5-
S are also Hopf unstable for the interval of 983.6 ≤ R ≤ 103.

Under the stabilizing effect of rotation, as the absolute
value of the rotation rate increases, the number of bifurcating
solutions at high Reynolds number decreases monotonically.
These results suggests that the bifurcation structure changes
drastically, as the absolute value of the rotation rate increases.

IV. NUMERICAL SIMULATIONS AT HIGH REYNOLDS
NUMBER UNDER 3-JET ZONAL FORCING

We carry out the numerical time integration at Ω =
0.0,±0.5 and R = 103. We employ the spectral method as
same as the before section but the truncation wavenumber is
fixed on N = 53 (for the grid points I = 160 and J = 80).
The time integration is performed with the forth order Runge-
Kutta method with a time step interval δt = 0.05 from several
initial conditions which are obtained by each steady/steady
traveling solution added with three different small disturbances
expressed by

δψi(λ, μ) =
10∑

n=2

n∑
m=−n

δψm
inY

m
n (λ, μ)

where δψm
in is the expansion coefficient in which the uniform

random number are substituted with the energy density of
δψi equal to 10−4 times of that of the original steady/steady
traveling solution. Here the energy density of ψ is defined by

E = − 1

8π

∫
ψΔψ dS.

We carry out the time integration until t = 5 × 105 and
calculate several statistical quantity in the time interval of
5× 104 ≤ t ≤ 5× 105.

Fig. 5 shows the time series of the energy density of the
unsteady solution and Fig. 6 shows the power spectrum of the
energy density of the unsteady solution. The energy density
undergo intermittent bursts and its power spectrum is broad.
Thus the unsteady solution is chaotic. We find that there are
many times when the streamfunction of the chaotic solution
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Fig. 5. The time series of the energy density of the chaotic solution at
Ω = 0.0, R = 103 The horizontal and vertical axes indicate the time and the
energy density, respectively.
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Fig. 6. The power spectrum of the energy density of the chaotic solution in
the case of Ω = 0.0 and R = 103. The horizontal and vertical axes indicate
the frequency and the power spectrum, respectively.

is similar to each unstable steady traveling solution and the
chaotic solution seems to wander around the unstable steady
traveling solutions.

Fig. 7 shows the time-averaged zonal-mean zonal velocity
of the chaotic solution with the snapshots of the zonal-mean
zonal velocity, where the zonal-mean zonal velocity is defined
by

U(μ) =
1

2π

∫ 2π

0

uλ(λ, μ) dλ.

The zonal-mean zonal velocity of the chaotic solution is
equatorial asymmetry but the time-averaged zonal-mean zonal
velocity has equatorial symmetry. This means that the chaotic
solution goes through the equatorial asymmetric states where
the northern (southern) jet of the zonal-mean zonal velocity is
stronger than the southern (northern) jet by the approximately
same frequencies. The number of jets of the time-averaged
zonal-mean zonal velocity is 3 which is equal to that of the
trivial solution but the magnitude of the time-averaged zonal-
mean zonal velocity is ∼ 1/5 of that of the trivial solution.

In the rotating case, on the other hand, Fig. 8 shows the
power spectrum of the unsteady solutions at Ω = ±0.5 and
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Fig. 7. The zonal-mean zonal velocity in the case of Ω = 0.0 and R =
103. The red line denotes the time-averaged zonal-mean zonal velocity of the
chaotic solution, while the black lines denote the snapshots of the zonal-mean
zonal velocity of the chaotic solution, respectively. The horizontal and vertical
axes indicate the zonal-mean zonal velocity and the latitude, respectively.
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Fig. 8. Same as Fig. 6 but in the cases of Ω = ±0.5 and R = 103. The red
and blue lines denote the case of Ω = −0.5 and Ω = 0.5, respectively. The
vertical dashed lines indicate ω−0.5 = 0.243 and ω0.5 = 0.635, respectively.

R = 103. In the case of Ω = −0.5 the picks of the power
spectrum are at the integer multiple of ω−0.5 = 0.243 while
in the case of Ω = 0.5 the picks are at the integer multiple of
ω0.5 = 0.635. Thus the unsteady solutions are time-periodic
in the each case.

Fig. 9 shows the zonal-mean zonal velocity of the time-
periodic solution in the case of Ω = −0.5. The magnitude
of the time-averaged zonal-mean zonal velocity of the time-
periodic solution is larger than that of the chaotic solutions in
the non-rotating case. The northern jet of the time-averaged
zonal-mean zonal velocity of the time-periodic solution is
slightly larger than the southern jet. Thus the time-averaged
zonal-mean zonal velocity of the time-periodic solution is
equatorial asymmetric. We also find the time-periodic solu-
tions the southern jet of which is slightly larger than the north-
ern jet and these time-periodic solutions are antisymmetric
with respect to the equator.
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Fig. 9. Same as Fig. 7 but in the case of Ω = −0.5 and R = 103.
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Fig. 10. Same as Fig. 7 but in the case of Ω = 0.5 and R = 103.

Fig. 10 shows the zonal-mean zonal velocity of the time-
periodic solution in the case of Ω = 0.5. The northern jet of
this periodic solution is clearly larger than the southern jet. The
time averaged zonal-mean zonal velocity of the time-periodic
solution in the case of Ω = 0.5 is also equatorial asymmetric.
We also find the periodic solutions the northern jet of which
is clearly larger than the northern jet and these time-periodic
solutions are antisymmetric with respect to the equator.

In the rotating case calculated, the unsteady solutions are
the time-periodic even at high Reynolds number where the
unsteady solutions are chaotic in the non-rotating case, and the
time-averaged zonal-mean zonal velocity of the time-periodic
solutions is equatorial asymmetric.

V. CONCLUSION

In this paper we study the bifurcation structure arising from
the zonal flow and the properties of the unsteady solutions
at high Reynolds number. On the bifurcation analysis, in the
non-rotating case, as Reynolds number increases, the steady
traveling solutions arise from the zonal flow through Hopf
bifurcation. As the Reynolds number further increases, several

traveling solutions arise through the pitchfork bifurcation from
the steady traveling solutions and at high Reynolds number
the steady/steady traveling solutions become Hopf unstable.
In the rotating cases calculated, at high Reynolds number the
number of the steady traveling solutions bifurcating from the
zonal flow decreases monotonically for the stabilizing effect
of rotation.

We also carry out the time integration at R = 103. In
the non-rotating case we find that the unsteady solution is
chaotic, and the time-averaged zonal-mean zonal velocity is
equatorial symmetric but the time series of the zonal-mean
zonal velocity of the chaotic solution is equatorial asymmetric.
This result suggests that the chaotic solution has the equatorial
asymmetric states by the approximately same frequencies. In
the rotating case, on the other hand, the unsteady solutions are
time-periodic. The time-averaged zonal-mean zonal velocity
of the time-periodic solutions is equatorial asymmetric. These
results suggests that the rotation effect stabilizes the nonlinear
solutions and the properties of the nonlinear solutions arising
from the zonal jet flow change significantly depending on the
rotation rate.

It should be noted that in the non-rotating case we find the
many times when the streamfunction of the chaotic solution
is similar to that of unstable steady/steady traveling solutions
obtained by bifurcation analysis. The chaotic solution seems
to wander around the unstable steady traveling solutions.
Observing the streamfunctions, we expect that properties of
the chaotic solutions can be obtained by using unstable
steady/steady traveling solutions. As an example, we repro-
duce the zonal-mean zonal velocity of the chaotic solution
using those of the steady/steady traveling solutions by the
linear mapping from the solution space to the zonal-mean
zonal profiles. The detailed discussion on the reproduction of
the zonal-mean zonal velocity of the chaotic solution will be
given in Sasaki, Takehiro and Yamada [16].
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