International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:2, No:11, 2008

Discovery of Sequential Patterns based on
Constraint Patterns

Shigeaki Sakurai, Youichi Kitahata, and Ryohei Orihara

Abstract—This paper proposes a method that discovers sequen-
tial patterns corresponding to user’s interests from sequential data.
This method expresses the interests as constraint patterns. The
constraint patterns can define relationships among attributes of the
items composing the data. The method recursively decomposes the
constraint patterns into constraint subpatterns. The method evaluates
the constraint subpatterns in order to efficiently discover sequential
patterns satisfying the constraint patterns. Also, this paper applies the
method to the sequential data composed of stock price indexes and
verifies its effectiveness through comparing it with a method without
using the constraint patterns.

Keywords—Sequential pattern mining, Constraint pattern, At-
tribute constraint, Stock price indexes

I. INTRODUCTION

Owing to the progress of computer and network environ-
ments, it is easy to collect and store sequential data such
as daily business reports, web log data, and physiological
information. The need for the data analysis is increasing,
because new knowledge is buried in them. Many studies have
been done on this theme. This paper focuses on analysis of
discrete sequential data, which is one of the topics related to
this theme. Agrawal and Srikant [1], Ayres et al. [2], Pei et al.
[4], Z. Yang and M. Kitsuregawa [9], and Zaki [10] propose
methods that efficiently discover frequent sequential patterns
from discrete sequential data. The patterns are regarded as new
knowledge. However, the patterns do not always correspond
to the user’s interests, because the patterns are common and
there are too many of them.

Garofalakis et al. [3], Pei et al. [5], Sakurai and Ueno
[6], Sakurai et al. [7], and Srikant and Agrawal [8] propose
methods that discover sequential patterns corresponding to the
user’s interest based on the background knowledge given by
the user. That is, Garofalakis et al. [3] propose a method
based on the regular expression constraint that uses user-
specified regular expressions as the background knowledge.
The method applies sequential patterns to the regular ex-
pressions and extracts only sequential patterns that satisfy
the regular expressions. Srikant and Agrawal [8] propose a
method that introduces time constraints, a time window, and
taxonomy. Here, the time constraints specify the minimum

Shigeaki Sakurai is with the System Engineering Laboratory, Corporate
Research & Development Center, Toshiba Corporation, Kawasaki, e-mail:
shigeaki.sakurai@toshiba.co.jp

Youichi Kitahara is with the System Engineering Laboratory, Corporate
Research & Development Center, Toshiba Corporation, Kawasaki, e-mail:
youichi.kitahata@toshiba.co.jp

Ryohei Orihara is with the HumanCentric Laboratory, Corporate Re-
search & Development Center, Toshiba Corporation, Kawasaki, e-mail: ry-
ohei.orihara@toshiba.co.jp

and the maximum time period between adjacent item sets,
the time window specifies items included in the same item
set, and the taxonomy allows that sequential patterns include
items across all levels of the taxonomy. The method has good
scale-up properties with respect to data size. Pei et al. [5]
present 7 kinds of constraints, including an item constraint,
a superpattern constraint, and a regular expression constraint.
Here, the item constraint can extract sequential patterns that
include or do not include specific items, and the superpattern
constraint can extract sequential patterns that include specific
sequential subpatterns. Pei et al. [5] investigate characteriza-
tion of the constraints and propose a new framework that
characterizes the constraints. Sakurai and Ueno [6] propose
a method that introduces specific pattern constraints and 7
kinds of time constraints. The time constraints can set more
flexible constraints between items than Srikant and Agrawal
[8]. The method extracts sequential patterns that include
specific patterns and satisfy time constraints.

These methods deal with items expressing two values. That
is, the existence of each item expresses whether the item is or
is not included in sequential data. The items are independent of
one another. These methods cannot deal with items dependent
on one another. For this problem, Sakurai et al. [7] propose an
attribute constraint. The constraint uses specific relationships
among items included in specific item sets. The constraint can
restrict items that occur simultaneously and items that occur
continuously.

However, the attribute constraints deal with limited con-
straints between items with three or more values and can-
not extract sequential pattern satisfying flexible relationships
among the items. Therefore, this paper proposes a new method
that flexibly expresses relationships among items in order
to efficiently discover sequential patterns corresponding to
the user’s interests. Also, this paper applies the method to
sequential data composed of stock price indexes and verifies
its effectiveness through numerical experiments.

Il. CONSTRAINT PATTERNS
A. Sequential pattern

This paper deals with a sequential pattern composed of rows
of item sets. Here, each item set has some items that occur
at the same time, but each item set does not have multiple
identical items. Formally, a sequential pattern s, is described
as (ly1, L2, -+ len,), Where I, is an item set and n,, is the
number of the item sets included in the sequential pattern. The
number n,, is called length and the pattern s, is called n,-th
sequential pattern. Each [,; is described as {vgi1, Vg2, -,

3876

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:2, No:11, 2008

Uging, }» WHEre vg;; is an item, va, # vaik, (k1 # ko), and
ng; 1S the number of items included in [,;.

On the other hand, when two sequential patterns s; and s
are given, their inclusion so = (I21, lag, * -+, lon,) € s1 = (I11,
lygy +++, lin,) is defined: 3 {21, 29, - -+, 2z, } SUCh as z; <
z2 < o0 < zp, and Iy Clizy, l2a Clizy, ooy lan, Clisz,,-
Figure 1 shows an example of the inclusion. In this figure, each
circle shows an item and the same items have the same pattern
on the circle. The concept of inclusion is used in evaluating the
frequency of sequential patterns. The frequency is the number
of sequential data including the patterns. Many sequential
pattern mining methods discover sequential patterns whose
supports are larger than or equal to the minimum support given
by the user. The support is defined by Formula (1) [1]. Here,
s is a sequential pattern, fs(s) is frequency of the pattern s,
and N is the total number of sequential data.

[fs(s)

supp(s) = N 1)

Fig. 1. Inclusion of sequential patterns [7]

B. Expression of items

Many sequential pattern mining methods [3] [5] [6] [8] deal
with items independent of one another. However, some items
are not independent of one another. For example, we note
changes in stock price indexes. Here, the changes are three
kinds of values: “up”, “flat”, and “down”. A change for a
company at one time is one of the three values. The values
do not occur simultaneously. The values are dependent on
one another. On the other hand, if the items corresponding to
the values are defined, the sequential pattern mining methods
generate the combinations of the items. However, the combi-
nations cannot occur simultaneously. The combinations cannot
be sequential patterns. That is, we can remove the combina-
tions from candidate sequential patterns without calculating
the frequency of the combinations. The relationships among
items lead to more efficient discovery of sequential patterns.

Thus, this paper introduces the concept of attributes to items
in order to deal with dependent items, where the attributes
show groups of items that have a common property. An item
v is composed of both an attribute A and an attribute value
a. The item v is described by A : a. For example, in the
case A="« company” and a="up”, the item is described as
“a company: up”. Similarly, in the case A="« company” and
a="down”, the item is described as “« company: down”. We
can express the dependent items by using the attribute A.

C. Introduction of constraint patterns

We expect that the user can describe relationships among
items corresponding to the user’s interests to some extent. For

example, we note changes in stock price indexes for three com-
panies: o« company, 3 company, and v company. The changes
are composed of three kinds of values as shown in subsection
II-B. That is, 9 items such as “« company: up”, “« company:
flat”, “oc company: down”, ---, and “y company: down” are
given. If the user is interested in relationships among three
companies such as {« company: up, v company: down}, it
is reasonable to extract only the sequential patterns including
the relationships. We can expect that the extracted patterns
correspond to the interests with high probability. However,
sequential patterns based on relationships of specific items are
limited and it is difficult for the user to set the relationships.
Also, the relationships cannot discover sequential patterns
based on relationships among items that the user does not
notice. The relationships cannot always discover all sequential
patterns satisfying the user’s interests.

Thus, this paper introduces constraint patterns in order to
easily extract valid sequential patterns. The constraint patterns
decide concrete attribute values but do not decide concrete
attributes. The constraints are most efficient in the case that
each attribute has the same kinds of attribute values. Therefore,
changes of the stock price indexes are a typical example. Also,
the constraints can be used in the case that some attributes
have common attribute values. The constraint patterns can
efficiently discover sequential patterns satisfying the relation-
ships among multiple attributes and their attribute values. If
the sequential subpatterns of the discovered patterns are given,
the patterns can be used in order to predict their remaining
subpatterns. In the following, a constraint pattern is formally
described as shown in Formula (2).

(017027"'0771,)’ (2)

Ci={x1:ai1,22: iz, -+ , T : Qin}
Here, z; (j = 1,2,---,n) is an attribute variable, «; corre-
sponds to an attribute, and x;, and x;, are different attributes
in the case that j; # j2. a;; shows an attribute value included
in ;. The constraint patterns can extract sequential patterns
whose lengths are m and each item set is composed of n
items. In the following, the constraint pattern is called m-th
constraint patterns when the length is m. In particular, the
constraint pattern is called a constraint item set when the
number of item sets included in the pattern is 1. The constraint
item set is called a constraint item when the number of items
included in the item set is 1. Also, frequent sequential patterns,
frequent item sets, and frequent items satisfying one of the
constraint patterns are called characteristic sequential patterns,
characteristic item sets, and characteristic items, respectively.

Here, we note that the user is usually interested in sequential
patterns whose lengths are within a range corresponding to
target tasks. Therefore, some constraint patterns with different
lengths are simultaneously set by the user.

For example, in the case of the changes in stock price
indexes, a constraint pattern (Cy,Cs,C3) is given, where
Cy={x1: up, zq: flat}, Ca={x1: up, zo: down} and Cs={z;:
flat, 2o: down}. The constraint pattern corresponds to three
constraint conditions as shown in Figure 2.

3877

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:2, No:11, 2008

({o company: up, 3 company: flat}, {« company: up, §
company: down}, {« company: flat, 5 company: down})

({« company: up, v company: flat}, {« company: up, v
company: down}, {« company: flat, v company: down})

({8 company: up, v company: flat}, {5 company: up, v
company: down}, {3 company: flat, v company: down})

Fig. 2. Examples of constraint conditions corresponding to a constraint
pattern

D. Decomposition of constraint patterns

When the kinds of attribute values, the number of the
attributes corresponding to the values, and the length of
constraint patterns are large, the combinations of attributes and
attribute values are very large. The combinations exponentially
increase. Therefore, a sequential pattern mining method can-
not generate all combinations in advance. Thus, this paper
proposes a method that checks the constraint patterns step
by step. In the following, we deal with a sequential pattern
mining method such as AprioriAll [1]. But, the constraint
patterns can be used in sequential pattern mining methods
such as PrefixSpan [4] and SPADE [10]. The method generates
items, item sets, and sequential patterns in order. The method
generates candidate item sets and evaluates whether they
are frequent or not. Also, the method generates candidate
sequential patterns and evaluates whether they are frequent
or not. The method repeats the generation steps and the
evaluation steps until all frequent item sets or all frequent
sequential patterns are discovered.

At first, we note the generation method of a candidate item
set. Figure 3 shows the outline of the method. The method
generates a candidate item set with (¢ + 1) items from two
frequent item sets with ¢ items. Here, each frequent item set
is composed of (¢ — 1) common items and a different item.
The candidate item set is composed of (i — 1) common items
and two different items. In each frequent item set, the items
are arranged in a specific order such as an alphabetic order.
The items included in the candidate item set also keep the
order. The candidate item set is evaluated as to whether it is
frequent or not.

Two frequent item sets A candidate item set
with i items Common item subsets with (it items
(C— \Mth (r-l) llems /

Fig. 3. Generation of a candidate item set

If the candidate item set satisfies a constraint item set, it is
necessary for the two frequent item sets to satisfy constraint
item subsets. The constraint item subsets are subsets included

in the constraint item set. On the contrary, if the frequent item
sets do not satisfy the constraint item subsets, the candidate
item set does not satisfy the constraint item set. The sequential
pattern mining method can avoid generating a candidate item
set by checking whether two frequent item sets satisfy the
constraint item subsets or not.

Next, we note the generation of candidate sequential pat-
terns. Figure 4 shows the outline of the method. That is, the
method generates a (k + 1)-th candidate sequential pattern
from two k-th frequent sequential patterns. Here, each frequent
sequential pattern is composed of (k — 1) common item sets
and a different item set. The different item sets are the last
item sets in the frequent sequential patterns. The candidate
sequential pattern is composed of (k — 1) common item sets
and two different item sets. In Figure 4, the last item set in the
upper frequent sequential pattern and the last item set in the
lower one are arranged in the order. The different order of the
last items generates a different candidate sequential pattern.
The generated candidate sequential pattern is evaluated as to
whether it is frequent or not.

l"'.'.u A th ﬁvqllcnl 5 lleutlal]J mems [.ﬁ 1 -th common sequential subpatterms

,;\ (k+1)-th c,mdlddie sequential pattem

Fig. 4. Generation of a candidate sequential pattern

If the candidate sequential pattern satisfies a constraint
pattern, it is necessary for the two frequent sequential patterns
to satisfy constraint subpatterns. The constraint subpatterns are
subpatterns included in the constraint pattern. The sequential
pattern mining method can avoid generating a candidate se-
quential pattern by checking whether two frequent sequential
patterns satisfy the constraint subpatterns or not. The calcula-
tion time of the check is much faster than that of frequency
of the candidate sequential pattern. Therefore, the method
can efficiently discover all sequential patterns satisfying the
constraint patterns by checking constraint subpatterns and
constraint item subsets.

We study a method that generates constraint subpatterns
and constraint item subsets from a constraint pattern. At first,
we note the generation of the candidate sequential patterns.
The generation implies unique decomposition of a candidate
sequential pattern into two frequent sequential patterns. The
constraint subpatterns are applied to the two frequent sequen-
tial patterns. Therefore, we can decide the subpatterns by the
inverse operation. That is, in the case that the constraint pattern
is Formula (2), the pattern is decomposed into two constraint
subpatterns as shown in Formula (3). The subpatterns are
regarded as new constraint patterns. The decomposition is
repeated until the length of all unprocessed constraint patterns

3878

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:2, No:11, 2008

oL (C1, Cpz, Cr—1)
1, "Ym-2,Ym-1),
(C1,++Con—2,C))

Next, we note the generation of the candidate item sets. The
generation implies unique decomposition of a candidate item
set into two frequent item sets. The constraint item subsets are
applied to the two frequent sequential item sets. Therefore, we
can decide the subsets by the inverse operation. That is, in the
case that a constraint item set C; is given as shown in Formula
(2), the set is decomposed into two constraint subsets as shown
in Formula (4). The subsets are regarded as new constraint
item sets. The decomposition is repeated until the number of
items in all unprocessed constraint item sets is 1.

{371 i1,

sy Tpn—2 1 Ain—2,Tn—1 * ain71}7 (4)
{71 a, -

y Tp—2 2 Ain—2, Ty - am}

For example, we note the constraint pattern given in subsec-
tion I1-C. The constraint is decomposed as shown in Figure
5. That is, the constraint is decomposed into two constraint
subpatterns: ({z1: up, z2: flat}, {z1: up, z2: down}) and ({z1:
up, zo: flat}, {z,: flat, x2: down}). The former constraint
subpattern is decomposed into two constraint item subsets:
{z1: up, x2: flat} and {z;: up, z2: down}, and the latter one
is decomposed into two constraint item subsets: {z;: up, xs:
flat} and {z;: flat, z5: down}. Three constraint item subsets
are generated, because the constraint item subset {z1: up, zs:
flat} is redundant. Lastly, three constraint items: “up”, “flat”,
and “down” are extracted from the constraint item subsets.
We note that attribute variables are neglected in the constraint
items, because the difference of the attribute variables does
not influence constraint conditions.

({x up,x,: flar},{x,:up,x, :down }, (x : flat ,x, down })
Decomposition of a . y .
constraint pattern xicup,x,), (x cup, %, dowm:))
{x, :up,x,: flat}

Delete

(x,:mp,
Decomposition of a
constraint item set

Fig. 5. An example of decomposition of a constraint pattern

The user can usually give some constraint patterns. These
patterns are decomposed into constraint subpatterns and con-
strain item subsets, respectively. The same subpatterns and
the same subsets are deleted. Table | shows an algorithm
of the decomposition of the constraint sequential patterns.
In this algorithm, original constraint patterns ConsDB are
input to it and it outputs both k-th constraint subpatterns Ry
and constraint item subsets with ¢ items Ry ;. At first, the
algorithm sets original constraint patterns to R and R, ,; by
referring to their length and the number of items included in
their item sets (step 1~step 7). Next, the algorithm picks up

constraint patterns from R, in a descending order of their
length and decomposes them into constraint subpatterns. The
algorithm sets the decomposed subpatterns to Ry according to
their length. The decomposed subpatterns are regarded as new
constraint patterns. The algorithm repeats the pattern decom-
position until the maximum length of unprocessed constraint
patterns is equal to 1 (step 8~step 14). Next, the algorithm
assigns constraint patterns included in R, into R, ; according
to the number of items included in the patterns (step 15~step
18). Next, the algorithm picks up constraint item sets from R; ;
in a descending order of the number of items included in the
item sets and decomposes them into constraint item subsets.
The algorithm sets the decomposed subsets to R, ; according
to the number of items included in them. The decomposed
subsets are regarded as new constraint item sets. The algorithm
repeats the set decomposition until the maximum number of
the items included in unprocessed item sets is 1 (step 19~step
25).

TABLE |
A CONSTRAINT PATTERN DECOMPOSITION ALGORITHM
step 1: Initialize mplen=—1, minum=—1, Rx=¢, and R; 1=¢.
step 2: If ConsDB is not equal to ¢, then extract a constraint

pattern (p) from ConsDB. Otherwise, go to step 8.

step 3: Calculate the length (plen) of p and the number (inum)
of items included in item sets of p.

step 4: If plen is bigger than mplen, then mplen= plen.

step 5: If inum is bigger than minum, then minum= inum.

step 6: If plen is not equal to 1, then add p t0 Rper. Otherwise,
add p to Rl,inu,m-

step 7: ConsDB= ConsDB—p and return to step 2.

step 8: k= mplen.

step 9: If k is smaller than or equal to 1, then go to step 15.

step 10: If Ry is not equal to ¢, then extract a constraint pattern
(p) form Ry. Otherwise, go to step 14.

step 11: Decompose p into two constraint subpatterns (p;, j=1, 2).

step 12: If p; is not included in Ry_1, then add p; t0 Ri—_1.

step 13: Rx= Ry — p and return to step 10.

step 14: k= k—1 and return to step 9.

step 15: If Ry is not equal to ¢, then extract a constraint pattern
(p) form R;. Otherwise, go to step 19.

step 16: Calculate the number (inum) of items included in item
sets of p.

step 17: If p is not included in R; inum, then add p t0 Ri1 inum.

step 18: Ri= R; — p and return to step 15.

step 19: = minum.

step 20: If 4 is smaller than or equal to 1, then terminate the
algorithm.

step 21: If Ry, is not equal to ¢, then extract a constraint pattern
(¢) form Ry ;. Otherwise, go to step 25.

step 22: Decompose ¢ into two constraint item subsets (c;, j=1,
2).

step 23: If ¢; is not included in Ry ;—1, then add ¢; to Ry ;1.

step 24: Ry ;= Ri,; — c and return to step 21.

step 25: i=i—1 and return to step 20.

The decomposed constraint patterns are applied to the
generation steps of the sequential pattern mining method. If
a candidate does not satisfy the constraints, the candidate is
excluded without calculating its frequency. The method can
efficiently discover all characteristic sequential patterns.

3879

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:2, No:11, 2008

I11. NUMERICAL EXPERIMENTS
A. Data

We use sequential data of the stock price indexes
on http://homepagel.nifty.com/hdatelier/data.htm (written in
Japanese) in order to evaluate the effect of constraint patterns.
The data are stock price indexes of each company listed on the
Tokyo Stock Exchange. The data are composed of a company
code, date, and 5 indexes: the start price, the maximum price,
the minimum price, the end price, and the amount of the sales.
The data range from September 2005 to September 2007. Also,
we regard each company code or each synthetic index as an
attribute and each daily change of an index as an attribute
value in order to investigate relationships among stock price
indexes of the companies and the synthetic indexes. Here, the
synthetic indexes are JASDAQ, Nikkei-Average, and TOPIX.
On the other hand, we calculate the change by dividing a
value of an index in a business day with a value of the index
in the next business day and judge which level the change
is included in. Here, the level is composed of (2d+1) levels:
X<d%, d%<x<(d—1)%, - - -, —2%<x< —1%, —1%<x<1%,
1%<x<2%, ---, (d—1)%<x<d%, and d%<x, where d is
natural number and x is a daily change. In the following, the
levels are referred to as L_, L_(g—1y, -+ L1, Lo, Ly, -+,
Ly_1, and L, respectively. A very long sequence is generated
from a row of indexes corresponding to a company or a
synthetic index. The sequence is divided into short sequences
by using a sliding window. In this experiment, the sliding
window includes 6 levels and goes to 4 levels forward along
the direction of time axis after extracting a short sequence.
For example, if the long sequence is L_3, L_o, L_1, Ly, L1,
Lo, L3, Lo, Ly, Ly, - -, the first short sequence is L_3, L_o,
L_4, Lo, L1, Ly and the second short sequence is L, Lo,
Ls, Lo, L1, Lg. Also, we generate 5 kinds of sequential data
corresponding to 5 indexes. In each sequential data, each item
set is composed of 28 items corresponding to 25 company
codes and three synthetic indexes.

B. Evaluation method

We evaluate the number of sequential patterns in the case of
using constraint patterns and not using the constraint patterns
in order to verify the effectiveness of the constraint patterns.
We use the 5 kinds of sequential data explained in subsection
I11-A. Also, we use constraint pattern sets as shown in Figure
6 and Figure 7. In these figures, an up-oblique arrow, a down-
oblique arrow, and a flat arrow show levels L4, Lo, L_g4,
respectively. The connected arrows correspond to a constraint
of an attribute. In the case of stock price indexes, the user is
interested in the changes. In addition, the time interval between
neighboring items of sequential patterns is 1. The constraint
pattern sets can discover characteristic sequential patterns that
focus on changes of two or three values included in different
attributes.

On the other hand, the number of items included in frequent
item sets is restricted within 3 in comparative experiments
not using the constraint patterns. Also, we use 1%, 3%, 5%,
10%, 15%, and 30% as the minimum supports and use 3,
5, and 7 as the number of levels. We perform comparative

i I] I 2 I 3 I 3
=

Length=1|~_ il
i - 1 T T -

| — .
Length=2 ", .

- — -

Length=3 ™ . . .
[——t _— | ——
|z

-
Length=4]>, _

Length=5| ™

R I St] [S —

Fig. 6. Constraint patterns in the case that the number of attributes is 2

i) 1

T
-.;
-

6 | 7 18

Length=1|-.

. .
3

Length=2| %

"
v
I

Length=3

v
RN
PR
.

"
"

Fig. 7. Constraint patterns in the case that the number of attributes is 3

experiments for each sequential data, each constraint pattern,
and each minimum support.

C. Experimental results

Figure 8 shows parts of experimental results. Figure 8 (a)
shows results in the case that the constraint patterns in Figure
6 are used and the number of levels is 5, Figure 8 (b) shows
results in the case that the constraint patterns are not used
and the number of levels is 5, Figure 8 (c) shows results in
the case that the constraint patterns with length 2 in Figure
7 are used and the number of levels is 3, Figure 8 (d) shows
results in the case that the constraint patterns with length 2 in
Figure 7 are used and the number of levels is 5. In each figure,
horizontal axis shows the minimum support and vertical axis
shows the number of sequential patterns. In each graph, the
numbers behind “a” and “e” indicate the number of attributes
and the length of extracted sequential patterns, respectively.
“no” indicates the case in which constraint patterns are not
used. The two numbers preceding “I” indicate the length of
a constraint pattern and its 1D, respectively. But, the second
number is “0” when all constraint patterns with the length
are applied simultaneously. For example, “a312.1e2” shows a
result in the case that the number of attributes is 3, the length
of a constraint pattern is 2, its ID is 1, and the length of
extracted sequential patterns is 2. Also, “total” shows results
that accumulate individual results corresponding to constraint
patterns with the length. The results clearly correspond to
the results that simultaneously apply all constraints with the
length.

D. Discussion

Number of sequential patterns: We note the results in Fig-
ure 8 (a) and Figure 8 (b). The number of sequential patterns

3880

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:2, No:11, 2008

2000

1g00

1600 2

1400 \

1200 \\\\'\
1000

Mumber of sequential patterns

Minimum suppart

[Fo—st et —m—sui20e2 —a—s1li0e3 —a—a21400d —n—a2l5 005 |

(a) Usage of constraint patterns (Number of items=2)

4000

2 3500
@)’\
= 3000
z
2 2500
&
& 2000
H
£ 1500
5
£ 1000
E
3 so0
0 L
% 5% 10K 20K

Minimum support

— 82 1e? — —h— —sll22e] — - ¥ - a2l Je? —-4—- 2312 42
soalle s 832507 —- p— - 8012507 —a— total

(c) Second sequential patterns (Number of items=3,
Number of levels=3)

Fig. 8. Experimental results

in the case that the constraint patterns are not used is 10 times
larger than the one in the case that they are used. The results
show that the constraint patterns can greatly reduce the number
of sequential patterns. On the other hand, the sequential pattern
mining method cannot discover all sequential patterns owing
to the restriction of computer environments, if the constraint
patterns are not used. It is possible for the constraint patterns
to analyze relationships among three items. Therefore, the
constraint patterns are efficient for the analysis of sequential
data including dependent relationships.

Number of attribute values: We note the results in Figure
8 (c) and Figure 8 (d). The results show that the number of
sequential patterns decreases as the number of attribute values
becomes large. The decrease is due to the decrease of items
with the same attribute values. If the number of attribute values
is large, the sequential pattern mining method can extract
sequential patterns with smaller support. It is important to
design attribute values by referring to frequency of the items.

Length of constraint patterns. We note the results in
Figure 8 (a) once more. The results show that the number
of sequential patterns decreases as the length of constraint
patterns becomes long. The long constraint patterns represent
many constraints. The number of sequential patterns satisfying
the constraints decreases dramatically. If the long constraint
patterns are applied, the sequential pattern mining method can
extract sequential patterns with smaller supports. Also, we note

50000

45000 —\
= 40000
E
£ 35000
a \
F 30000
£ \
3 25000 L\\ \
H
[
+ 20000 '\
% 15000
2 10000 ‘—.\-—\

4000 L -~

a #\\M_\._
% K 5% 10K 20%
Minmum support
I nogl B—noe? —A—noel - a4 nogb ---@-.-noeb I

(b) No usage of constraint patterns (Number of items=2)

2000

w 1800
2
& 1600 A,
2 1400
=
< 1200 Y
5 100 \
A 800
2 oo N
H X N
] — N
)
0 = » -
1% 3K 5% 10K 20K

Minimum support

—8— sl 0e? — —h —sll22e) —-¥-—al23e? —- - adl24e?
soolles - 8302507 = p— . 8312 50t —a—— total

(d) Second sequential patterns (Number of items=3,
Number of levels=5)

the results in Figure 8 (b). The results show that 6th sequential
patterns are discovered in the case that the constraint patterns
are not used. The sequential patterns do not correspond to
the user’s interest. The method can avoid the generation of
redundant sequential patterns.

On the other hand, the constraint patterns restrict the length
of sequential patterns. The constraint patterns cannot discover
sequential patterns, if the length is unclear. However, the
sequential pattern mining method can deal with the constraint
patterns with different length simultaneously. That is, the
user can define possible constraint patterns with the different
length. Therefore, the restriction is irrelevant to us.

Decomposition of constraint patterns: The sequential
pattern mining method can use all constraint patterns in
Figure 6 and Figure 7 simultaneously. The large number of
constraint patterns leads to the reduction of total calculation
time, because the calculation of the common constraint pattern
is performed at one time. On the other hand, the large number
leads to generating a large number of candidate sequential
patterns in order to generate longer sequential patterns, even
if the candidates are not extracted as characteristic sequential
patterns. Therefore, a computer may not be able to deal with
the constraint patterns simultaneously owing to the restriction
of available computer environments. Actually, the experiments
based on all constraint patterns with the length 3 cannot
discover all sequential patterns. The sequential pattern mining

3881

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:2, No:11, 2008

method requires individually applying each constraint pattern.
In future work, it is necessary to decide the number of
constraint patterns that is simultaneously set by referring to
available computer environments.

Validity of sequential patterns: In this experiment, the
constraint patterns are defined in order to investigate changes
of the indexes among different companies and synthetic in-
dexes. In the case of the stock price indexes, the user is
interested in the changes. Therefore, the discovered sequential
patterns are important to some extent, even if we do not check
the individual sequential patterns in detail. The constraint
patterns can discover the sequential patterns efficiently.

On the other hand, the constraint patterns depend on target
tasks. Other target tasks may require different constraint pat-
terns. We think that there are some typical constraint patterns
corresponding to the user’s interests. In future work, we intend
to prepare for the constraint patterns processing typical target
tasks.

Previous methods: Previous studies proposed sequential
pattern mining methods based on other constraints. However,
these constraints cannot sufficiently deal with items with
dependent attribute values. That is, the regular expression
constraint [3] cannot be described intuitively, even if it can
express various relationships among items. The constraint
requires users to be familiar with its description. The item
constraint and the superpattern constraint [5] need specific
items and specific subpatterns. These constraints require the
users to have definite background knowledge in order to select
the items and the subpatterns. Also, the attribute constraint
[7] deals only with specific relationships among items. The
constraint depends excessively on target tasks. In addition, the
time constraint [6] [8] only restricts the interval between items
and cannot deal with their contents.

On the other hand, the proposed constraint patterns can
be described intuitively by using sequential combination of
attribute values. The users can easily describe the constraint
patterns. Also, they can use background knowledge including
ambiguity by introducing the attribute variables. In addition,
they can describe various types of relationships among items
by processing constraint patterns whose lengths are different.
Therefore, the constraint patterns can efficiently use back-
ground knowledge.

In light of the above the discussions, we believe that the
proposed constraint patterns are important and the sequential
mining method based on the patterns is effective.

IV. SUMMARY AND FUTURE WORK

This paper proposed a method that describes constraint
patterns to discover sequential patterns corresponding to the
user’s interests using the user’s background knowledge. The
sequential mining method incorporating the constraint patterns
efficiently discovers sequential patterns satisfying the interests
described by the constraint patterns. Lastly, this paper verified
the effectiveness of the proposed method by applying the
method to sequential data of stock price indexes.

In future work, we will try to verify the validity of discov-
ered patterns in more detail by listening to the opinions of the

user. Also, we will try to clarify a method for simultaneous
usage of constraint patterns based on the minimum support and
the restriction of available computer environments. In addition,
we will try to prepare for typical constraint patterns for other
target tasks and to verify the effectiveness of the constraint
patterns by applying them to other sequential data.

REFERENCES
§

—

R. Agrawal and R. Srikant, Mining Sequential Patterns, Proc. of the 11th

Intl. Conf. Data Engineering, 1995, Taipei, Taiwan, pp. 3-14.

J. Ayres, J. Flannick, J. Gehrke, and T. Yiu, “Sequential pattern mining

using a bitmap representation,” Proc. of the 8th Intl. Conf. on Knowledge

Discovery and Data Mining, 2002, Edmonton, Alberta, Canada, pp. 429-

435.

[3] M. N. Garofalakis, R. Rastogi, and K. Shim, “SPIRIT: Sequential Pattern

Mining with Regular Expression Constraints,” Proc. of the \ery Large

Data Bases Conf., 1999, Edinburgh, Scotland, UK, pp. 223-234.

J. Pei, J. Han, B. Mortazavi-Asl, J. Wang, H. Pinto, Q. Chen, U. Dayal,

M. -C. Hsu, “Mining Sequential Patterns by Pattern-Growth: The Pre-

fixSpan Approach,” IEEE Trans. on Knowledge and Data Engineering,

vol. 16, no. 11, pp. 1424-1440, 2004.

[5] J. Pei, J. Han, and W. Wang, “Mining Sequential Patterns with Constraints
in Large Databases,” Proc. of the 11th ACM Intl. Conf. on Information
and Knowledge Management, 2002, McLean, Virginia, USA, pp. 18-25.

[6] S. Sakurai, K. Ueno, and R. Orihara, “Discovery of Time Series Event

Patterns based on Time Constraints from Textual Data,” Intl. J. of

Computational Intelligence, vol. 4, no. 2, pp. 144-151, 2008.

S. Sakurai, Y. Kitahara, R. Orihara, K. Iwata, N. Honda, and T. Hayashi,

“Discovery of Sequential Patterns Coinciding with Analysts’ Interests,”

J. of Computers, vol. 3, issue 7, pp. 1-8, 2008.

R. Srikant and R. Agrawal, “Mining Sequential Patterns: Generalizations

and Performance Improvements,” Proc. of the 5th Intl. Conf. Extending

Database Technology, 1996, Avignon, France, pp. 3-17.

[9] Z. Yang and M. Kitsuregawa, “LAPIN-SPAM: An Improved Algorithm
for Mining Sequential Pattern,” Proc. of the 21st Intl. Conf. on Data
Engineering Workshops, 2005, Tokyo, Japan, pp. 1222.

[10] M. J. Zaki, “SPADE: An Efficient Algorithm for Mining Frequent

Sequences,” Machine Learning, vol. 42, no. 1/2, pp, 31-60, 2001.

2

—

flnar

[4

[7

—

[8

—

Shigeaki Sakurai received an MS degree in mathematics and a Ph.D. degree
in industrial administration from Tokyo University of Science, Japan, in 1991
and 2001, respectively. He was a Professional Engineer of Japan in the field
of information engineering in 2004.

He is a research scientist at the System Engineering Laboratory, Corporate
Research & Development Center, Toshiba Corporation. His research interests
include data mining, soft computing, and web technology.

Dr. Sakurai is a member of IEICE, SOFT, and JSAI.

Youichi Kitahara received an MS degree in earth system science and
technology from Kyushu University, Japan, in 2003.

He works at the System Engineering Laboratory, Corporate Research &
Development Center, Toshiba Corporation. His research interests include data
mining and machine learning.

Ryohei Orihara received a BS degree, an MS degree, and a Ph.D. degree in
engineering from the University of Tsukuba, Japan, in 1986, 1988 and 1999,
respectively.

He is the laboratory leader at the HumanCentric Laboratory, Corporate
Research & Development Center, Toshiba Corporation. He is also a part-
time associate professor at Tokyo Institute of Technology, Japan. His research
interests include machine learning, creativity support systems, analogical
reasoning, metaphor understanding, data mining and text mining.

Dr. Orihara is a member of IPSJ, JSAI, and JSSST.

3882

