
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

3136

A Parallel Quadtree Approach for Image
Compression using Wavelets

Hamed Vahdat Nejad, and Hossein Deldari

Abstract—Wavelet transforms are multiresolution

decompositions that can be used to analyze signals and images.
Image compression is one of major applications of wavelet
transforms in image processing. It is considered as one of the most
powerful methods that provides a high compression ratio. However,
its implementation is very time-consuming. At the other hand,
parallel computing technologies are an efficient method for image
compression using wavelets. In this paper, we propose a parallel
wavelet compression algorithm based on quadtrees. We implement
the algorithm using MatlabMPI (a parallel, message passing version
of Matlab), and compute its isoefficiency function, and show that it is
scalable. Our experimental results confirm the efficiency of the
algorithm also.

Keywords—Image compression, MPI, Parallel computing,

Wavelets.

I. INTRODUCTION
AVELETS are the foundation of a powerful new
approach to signal processing and analysis, called

multiresolution theory [3], [6]. Multiresolution theory
incorporates and unifies techniques from a variety of
disciplines, including subband coding from signal processing,
quadrature mirror filtering from digital speech recognition,
and pyramid image processing. As its name implies,
multiresolution theory is concerned with the representation
and analysis of signals (or images) at more than one
resolution. The appeal of such an approach is obvious-
features that might go undetected at one resolution may be
easy to spot at another.
 In two dimensional signals (images), at each level of
wavelet decomposition, four quarter-size output images called
approximation, Horizontal detail, vertical detail, and diagonal
detail are produced. Fig. 1 shows an image and its wavelet
decomposition. Beginning with the upper-left corner and
proceeding in a clockwise manner, the subimages are
approximation, horizontal detail, diagonal detail, and vertical
detail. By decomposing each of the new quaternary images,
we obtain the second level decomposition of the original
image. This process can be repeated with respect to the
application specific criteria. Fig. 2 shows a full three-level
wavelet decomposition of a fingerprint image. It consists of 64
subimages. In wavelet processing after decomposition, the

Authors are with Ferdowsi University of Mashad, Computer Department,
Iran (e-mail: Hamed.vh@gmail.com, hdeldari@yahoo.com).

new subimages are processed instead of the original image.
Some new applications including image denoising and

compression have been issued in wavelet processing [3]. The
major problem of such applications is the long running time
when they executed on one processor [4], [5]. Since wavelet
decomposition is naturally adaptable to quadtrees, we use a
quadtree structure for parallelizing image compression.

We implement the application using message passing
model. In the world of parallel computing, the message
passing interface (MPI)[7] is the de facto standard for
implementing programs on multiple processors. MPI defines
C and FORTRAN language functions for doing point to point
communication in a parallel program. MPI has proven to be an
efficient model for implementing parallel programs and is
used by many of the world’s most demanding applications.
MatlabMPI [1] is set of Matlab scripts that implement a subset
of MPI and allow any Matlab program to be run on a parallel
computer. The key innovation of MatlabMPI is that it
implements the widely used MPI on top of standard Matlab
file I/O, resulting in a pure Matlab implementation that is
exceedingly small. Thus MatlabMPI will run on any
combination of computers that Matlab supports. We use
MatlabMPI to implement the proposed algorithm.

The rest of this paper is organized as follows. In section 2
we introduce serial compression algorithm. Section 3
describes the proposed parallel algorithm. We evaluate the
algorithm in Section 4. Section 5 concludes.

W

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

3137

Fig. 1 Wavelet decomposition in 4 blocks

Fig. 2 Three scale, full wavelet packet decomposition

II. IMAGE COMPRESSION USING WAVELETS
The general wavelet–based procedure for image

compression is as follows [2], [3]:

1. Decomposition: Choose a wavelet (e.g. Haar,
Symlet…) and number of levels L for the
decomposition.

2. Thresholding: Compare the wavelet coefficients of
the image with ε and set them to zero if they are
lower than it.

3. Quantization
4. Encoding

In the thresholding step, a threshold ε of the compression is
fixed. Then wavelet coefficients of the image are compared
with ε: they are set to zero, if they are lower than it.

 In quantization step, compression is achieved by matching
an input sequence of data samples with the entries (i.e. the
codewords) in a pre-classified database known as codebook or
“dictionary”. The dictionary contains the sourse symbols to be
coded. Clearly, the size of the dictionary is an important
system parameter. If it is too small, the detection of matching
gray-level sequences will be less likely; If it is too large, the
size of the code words will adversely affect compression
performance, and it needs much time to detect a code in the
dictionary. The large computational load at the encoding
process is the main problem that prevents the idea to be
applied in real-time image compression systems. Many
research works have been carried out to reduce the
computational complexity of the quantization process. The
kind of works is to limit the number of code words to be
searched in the codebook.

In the final stage, symbol encoder creates a fixed or
variable-length code to represent the quantizer output, and
maps the output in accordance with the code. In most cases, a
variable-length code is used to represent the quantized dataset.
It assigns the shortest code words to the most frequently
occurring output values and thus reduces coding redundancy.
Huffman, arithmetic, and bit-plane coding [3] are well-known
coding approaches.

III. PARALLEL COMPRESSION ALGORITHM
Let number of processors is p=4i, where i is a positive

integer equal to the number of wavelet decomposition levels.
We assume that initially each processor has a wavelet
approximation or detail of level i. The distribution is based on
the structure of quadtrees, in which any four subimages of one
wavelet decomposition level are distributed among four
adjacent processors. Fig. 3 shows the distribution of a 2 level
decomposed image between 16 processors. The number
written in each subimage indicates the rank of the processor
which contains the corresponding approximation or detail. The
proposed algorithm is as follows:

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

3138

Fig. 3 Distribution of blocks to different processors

• Each processor except master (processor with rank 0)

applies a threshold to its subimage (Processor 0
contains the approximation of the image, and the
threshold is applied to detail coefficients only). So
many of detail coefficients become zero.

• Each processor quantifies its subimage with the
adequate codebook.

• Encode each result using an encoder (e.g. Huffman,
runlength, arithmetic…)

• Each processor sends its coded subimage to the base
processor. The base processor is the processor with
rank int(i/4)*4, where i is the rank of the current
processor. When a base processor receives three
encoded images of its three siblings, it reconstructs a
larger subimage, and sends it to the second level base
processor which is computed by int(i/16)*16. This
operation continues until processor 0 receives the
whole coded image. The following semi-code shows
these steps:

Procedure CMP-Qtree ()
{
If (my_rank≠0) Threshold ();
Quantify ();
Encode ();
For (i=1; i=Log4P; i++)
{

if ((my_rank mod 4i-1) =0)
&& ((my_rank mod 4i) ≠0)

 Send coded image to
 int (my_rank/4i)* 4i

}
if ((my_rank mod) 4i =0)

 {
 Receive three coded images
 Merge four coded images
 }
}
}

IV. EXPERIMENTS
A. Evaluation
For the sake of simplicity, we assume that the original

image is a square matrix of order 2n×2n, and the number of
processors equals to 4i, where i is the number of wavelet
decomposition levels. Hence each processor has one image of
size 2n-i ×2n-i. First all processors execute thresholding (except
master), vector quantifying and encoding. The time
complexity of thresholding and arithmetic coding is o(2n-i×2n-

i). If codebook contains L words, quantifying is done in
o(2n-i×2n-i×L). The communication step consists of log4P all to
one reduction. Four processors participate in each reduction so
it takes (ts+twm)log4 time, where m=2n-i×2n-i is the size of
message, ts is the startup time required to handle a message at
the sending process, and tw is the per-word transfer time .
Therefore communication time is:

=commT 4log))4(
4

log

1

in
P

i
ws tt −

=
∑ +

3
444log4loglog

4log

4

pnn

ws
p tt

−−
+=

The parallel time is computed as the sum of communication
and computation time, hence

3
444log4loglog4

4log

4

pnn

ws
pin

p ttLT
−

− −
++×=

Now we can compute the overhead time as follow:

 =−= WPTT po

3
444log4loglog

4log

4

pnn

ws
p tptp

−−
+=

 n
w

n
w

p
s tkptkptk 44log 3241 −+= (1)

The central relation that determines the isoefficiency function
of a parallel program is W=kTo, where k=E/(1-E) and E is the
desired isoefficiency. Rewriting this equation by substituting
(1) for To, we have:

n
w

n
w

p
s tkkptkkptkkW 44log 3241 −+= (2)

Rewriting this relation first with only the ts term of To:

P
s PtkkW 41 log)(= (3)

This equation gives the isoefficiency function (plogp) with
respect to message startup time. Similarly for the second term
of (2), we have

=W n
wPtkk 42

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

3139

n
w

n PtkkL 44 2=×⇒

PtkkL w2=⇒

Suppose 2n=L which means that, the number of codes is equal
to number of pixels in one dimension. Therefore,

 Ptkk w

n
22 =

33
2

3)()2(PtkkW w
n ==⇒ (4)

Similarly we have from third term of (1),
 n

wtkkW 43−=

 n
w

n tkkL 4)(4 3−=×⇒

)(3 wtkkL −=⇒
3

3)(wtkkW −=⇒ (5)

By comparing (3), (4), and (5), the overall asymptotic
isoefficiency function is)(3pθ .

B. Implementation
We test the parallel program for various numbers of

processors. For this, we exploit an 1800×2115 image (Fig. 4)
and a dictionary of 1024 codes. Table Ι shows the results in
the sense of speedup. The Efficiency diagram of the algorithm
for various numbers of processors is shown in Fig. 5.

V. CONCLUSION
Parallel technology is an efficient method for image

compression, because the encoding needs fast processing. In
this paper, we have presented a parallel algorithm for image
compression based on wavelet transformation. The algorithm
is data parallel, and has been implemented with MPI
directives. We have shown the feasibility of the parallel
algorithm by computing isoefficiency function. We have also
tested the algorithm for various numbers of processors.
Results show the effectiveness of the parallel algorithm.

TABLE I
SPEEDUP

Number of Processors Speedup
4 3.2
16 12.2
64 44.7

Fig. 4 Test image

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60 70

Processors

Ef
fic

ie
nc

y

Fig. 5 Efficiency vs. Processors

REFERENCES
[1] Jeremy Kepner, “Parallel programming with MatlabMPI”, 2002, High

Performance Embedded Computing (HPEC) workshop, MIT Lincoln
Laboratory, Lexington, MA, http://arXiv.org/abs/astro-ph/0107406.

[2] P. Moravie, H. Essafi, C. Lambert-nebout, and J-L. Basille, “Real-time
image compression using SIMD architectures”, In Proceedings of
Computer Architectures for Machine Perception, 1995.

[3] Rafael C. Gonzalez and Richard E. Woods, “Digital Image Processing”,
Addison-Wesley Publishing Company.

[4] S. Khanfir, M. Jemni ,and E. Ben Braiek, “Parallelization of an image
compression and decompression algorithm based on 1D wavelet
transformation”, In Proceedings of First International Symposium on
Control, communications and Signal Processing, 2004.

[5] Shi-xin Sun, Chao-yang Pang, Wen-yu Chen, “A new parallel
architecture for image compression”, In Proceedings of CSCW in
Design, 2002.

[6] Yansun Xu , John B. Weaver, Dennis M. Healy, and Jian Lu, “Wavelet
transform domain filters: A spatially selective noise filtration
technique”, In Proceedings of IEEE Tansactions on image processing,
Vol. 3, No. 6, November 1994.

[7] “Message Passing Interface” (MPI), http://www.mpiforum.org

