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Abstract—Wavelet transforms are multiresolution 

decompositions that can be used to analyze signals and images. 
Image compression is one of major applications of wavelet 
transforms in image processing. It is considered as one of the most 
powerful methods that provides a high compression ratio. However, 
its implementation is very time-consuming. At the other hand, 
parallel computing technologies are an efficient method for image 
compression using wavelets. In this paper, we propose a parallel 
wavelet compression algorithm based on quadtrees. We implement 
the algorithm using MatlabMPI (a parallel, message passing version 
of Matlab), and compute its isoefficiency function, and show that it is 
scalable. Our experimental results confirm the efficiency of the 
algorithm also. 
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I. INTRODUCTION 
AVELETS are the foundation of a powerful new 
approach to signal processing and analysis, called 

multiresolution theory [3], [6]. Multiresolution theory 
incorporates and unifies techniques from a variety of 
disciplines, including subband coding from signal processing, 
quadrature mirror filtering from digital speech recognition, 
and pyramid image processing. As its name implies, 
multiresolution theory is concerned with the representation 
and analysis of signals (or images) at more than one 
resolution. The appeal of such an approach is obvious- 
features that might go undetected at one resolution may be 
easy to spot at another. 
 In two dimensional signals (images), at each level of 
wavelet decomposition, four quarter-size output images called 
approximation, Horizontal detail, vertical detail, and diagonal 
detail are produced. Fig. 1 shows an image and its wavelet 
decomposition. Beginning with the upper-left corner and 
proceeding in a clockwise manner, the subimages are 
approximation, horizontal detail, diagonal detail, and vertical 
detail. By decomposing each of the new quaternary images, 
we obtain the second level decomposition of the original 
image. This process can be repeated with respect to the 
application specific criteria. Fig. 2 shows a full three-level 
wavelet decomposition of a fingerprint image. It consists of 64 
subimages.  In wavelet processing after decomposition, the 
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new subimages are processed instead of the original image. 
Some new applications including image denoising and 

compression have been issued in wavelet processing [3]. The 
major problem of such applications is the long running time 
when they executed on one processor [4], [5]. Since wavelet 
decomposition is naturally adaptable to quadtrees, we use a 
quadtree structure for parallelizing image compression. 

We implement the application using message passing 
model. In the world of parallel computing, the message 
passing interface (MPI)[7] is the de facto standard for 
implementing programs on multiple processors. MPI defines 
C and FORTRAN language functions for doing point to point 
communication in a parallel program. MPI has proven to be an 
efficient model for implementing parallel programs and is 
used by many of the world’s most demanding applications. 
MatlabMPI [1] is set of Matlab scripts that implement a subset 
of MPI and allow any Matlab program to be run on a parallel 
computer. The key innovation of MatlabMPI is that it 
implements the widely used MPI on top of standard Matlab 
file I/O, resulting in a pure Matlab implementation that is 
exceedingly small. Thus MatlabMPI will run on any 
combination of computers that Matlab supports. We use 
MatlabMPI to implement the proposed algorithm. 

The rest of this paper is organized as follows. In section 2 
we introduce serial compression algorithm. Section 3 
describes the proposed parallel algorithm. We evaluate the 
algorithm in Section 4. Section 5 concludes. 
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Fig. 1 Wavelet decomposition in 4 blocks 
 

 
Fig. 2 Three scale, full wavelet packet decomposition 

 

II. IMAGE COMPRESSION USING WAVELETS 
The general wavelet–based procedure for image 

compression is as follows [2], [3]: 

1. Decomposition: Choose a wavelet (e.g. Haar, 
Symlet…) and number of levels L for the 
decomposition. 

2. Thresholding: Compare the wavelet coefficients of 
the image with ε and set them to zero if they are 
lower than it. 

3. Quantization 
4. Encoding 
 

In the thresholding step, a threshold ε of the compression is 
fixed. Then wavelet coefficients of the image are compared 
with ε: they are set to zero, if they are lower than it. 

 In quantization step, compression is achieved by matching 
an input sequence of data samples with the entries (i.e. the 
codewords) in a pre-classified database known as codebook or 
“dictionary”. The dictionary contains the sourse symbols to be 
coded. Clearly, the size of the dictionary is an important 
system parameter. If it is too small, the detection of matching 
gray-level sequences will be less likely; If it is too large, the 
size of the code words will adversely affect compression 
performance, and it needs much time to detect a code in the 
dictionary. The large computational load at the encoding 
process is the main problem that prevents the idea to be 
applied in real-time image compression systems. Many 
research works have been carried out to reduce the 
computational complexity of the quantization process. The 
kind of works is to limit the number of code words to be 
searched in the codebook.  

In the final stage, symbol encoder creates a fixed or 
variable-length code to represent the quantizer output, and 
maps the output in accordance with the code. In most cases, a 
variable-length code is used to represent the quantized dataset. 
It assigns the shortest code words to the most frequently 
occurring output values and thus reduces coding redundancy. 
Huffman, arithmetic, and bit-plane coding [3] are well-known 
coding approaches. 
 

III. PARALLEL COMPRESSION ALGORITHM 
Let number of processors is p=4i, where i is a positive 

integer equal to the number of wavelet decomposition levels. 
We assume that initially each processor has a wavelet 
approximation or detail of level i. The distribution is based on 
the structure of quadtrees, in which any four subimages of one 
wavelet decomposition level are distributed among four 
adjacent processors. Fig. 3 shows the distribution of a 2 level 
decomposed image between 16 processors. The number 
written in each subimage indicates the rank of the processor 
which contains the corresponding approximation or detail. The 
proposed algorithm is as follows: 
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Fig. 3 Distribution of blocks to different processors 

 
 
• Each processor except master (processor with rank 0) 

applies a threshold to its subimage (Processor 0 
contains the approximation of the image, and the 
threshold is applied to detail coefficients only). So 
many of detail coefficients become zero. 

• Each processor quantifies its subimage with the 
adequate codebook. 

• Encode each result using an encoder (e.g. Huffman, 
runlength, arithmetic…)  

• Each processor sends its coded subimage to the base 
processor. The base processor is the processor with 
rank int(i/4)*4, where i is the rank of the current 
processor. When a base processor receives three 
encoded images of its three siblings, it reconstructs a 
larger subimage, and sends it to the second level base 
processor which is computed by int(i/16)*16. This 
operation continues until processor 0 receives the 
whole coded image. The following semi-code shows 
these steps: 

 
Procedure CMP-Qtree () 
{ 
If (my_rank≠0)   Threshold (); 
Quantify (); 
Encode (); 
For (i=1; i=Log4P; i++) 
{ 

if ((my_rank mod 4i-1) =0 ) 
&& ((my_rank mod 4i) ≠0 ) 

    Send coded image to  
    int (my_rank/4i)* 4i 

} 
if ((my_rank mod) 4i =0) 

 { 
        Receive three coded images 
        Merge four coded images 
 } 
} 
} 
 
 

IV. EXPERIMENTS 
A.  Evaluation 
For the sake of simplicity, we assume that the original 

image is a square matrix of order 2n×2n, and the number of 
processors equals to 4i, where i is the number of wavelet 
decomposition levels. Hence each processor has one image of 
size 2n-i ×2n-i. First all processors execute thresholding (except 
master), vector quantifying and encoding. The time 
complexity of thresholding and arithmetic coding is o(2n-i×2n-

i). If codebook contains L words, quantifying is done in            
o(2n-i×2n-i×L). The communication step consists of log4P all to 
one reduction. Four processors participate in each reduction so 
it takes (ts+twm)log4 time, where m=2n-i×2n-i is the size of 
message, ts is the startup time required to handle a message at 
the sending process, and tw is the per-word transfer time . 
Therefore communication time is: 
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The parallel time is computed as the sum of communication 
and computation time, hence  
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Now we can compute the overhead time as follow: 
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The central relation that determines the isoefficiency function 
of a parallel program is W=kTo, where k=E/(1-E) and E is the 
desired isoefficiency. Rewriting this equation by substituting 
(1) for To, we have: 
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Rewriting this relation first with only the ts term of To: 
 

P
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This equation gives the isoefficiency function (plogp) with 
respect to message startup time. Similarly for the second term 
of (2), we have 
 

=W n
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Suppose 2n=L which means that, the number of codes is equal 
to number of pixels in one dimension. Therefore, 
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Similarly we have from third term of (1), 
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By comparing (3), (4), and (5), the overall asymptotic 
isoefficiency function is )( 3pθ . 
 

B.  Implementation 
We test the parallel program for various numbers of 

processors. For this, we exploit an 1800×2115 image (Fig. 4) 
and a dictionary of 1024 codes. Table Ι shows the results in 
the sense of speedup.  The Efficiency diagram of the algorithm 
for various numbers of processors is shown in Fig. 5. 

 

V. CONCLUSION 
Parallel technology is an efficient method for image 

compression, because the encoding needs fast processing. In 
this paper, we have presented a parallel algorithm for image 
compression based on wavelet transformation. The algorithm 
is data parallel, and has been implemented with MPI 
directives. We have shown the feasibility of the parallel 
algorithm by computing isoefficiency function. We have also 
tested the algorithm for various numbers of processors. 
Results show the effectiveness of the parallel algorithm. 

 
 

TABLE I 
SPEEDUP 

Number of Processors Speedup 
4 3.2 
16 12.2 
64 44.7 

 

 
Fig. 4 Test image 
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Fig. 5 Efficiency vs. Processors 
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