A note on the minimum cardinality of critical sets of inertias for irreducible zero-nonzero patterns of order 4

Ber-Lin Yu and Ting-Zhu Huang

Abstract-If there exists a nonempty, proper subset \mathcal{S} of the set of all $(n+1)(n+2) / 2$ inertias such that $\mathcal{S} \subseteq i(\mathcal{A})$ is sufficient for any $n \times n$ zero-nonzero pattern \mathcal{A} to be inertially arbitrary, then \mathcal{S} is called a critical set of inertias for zero-nonzero patterns of order n. If no proper subset of \mathcal{S} is a critical set, then \mathcal{S} is called a minimal critical set of inertias. In [Kim, Olesky and Driessche, Critical sets of inertias for matrix patterns, Linear and Multilinear Algebra, 57 (3) (2009) 293-306], identifying all minimal critical sets of inertias for $n \times n$ zero-nonzero patterns with $n \geq 3$ and the minimum cardinality of such a set are posed as two open questions by Kim, Olesky and Driessche. In this note, the minimum cardinality of all critical sets of inertias for 4×4 irreducible zero-nonzero patterns is identified.

Keywords-Zero-nonzero pattern, Inertia, Critical set of inertias, Inertially arbitrary.

I. Introduction

A$\mathrm{N} n \times n$ zero-nonzero pattern is a matrix $\mathcal{A}=\left[\alpha_{i j}\right]$ with entries in $\{*, 0\}$ where $*$ denotes a nonzero real number. The set of all real matrices $A=\left[a_{i j}\right]$ such that $a_{i j} \neq 0$ if and only if $\alpha_{i j}=*$ for all i and j. If $A \in Q(\mathcal{A})$, then A is a realization of \mathcal{A}. A subpattern of an $n \times n$ zero-nonzero pattern $\mathcal{A}=\left[\alpha_{i j}\right]$ is an $n \times n$ zero-nonzero pattern $\mathcal{B}=\left[\beta_{i j}\right]$ such that $\beta_{i j}=0$ whenever $\alpha_{i j}=0$. If \mathcal{B} is a subpattern of \mathcal{A}, then \mathcal{A} is a superpattern of \mathcal{B}. A zero-nonzero pattern \mathcal{A} is reducible if there is a permutation matrix \mathcal{P} such that

$$
\mathcal{P} \mathcal{A} \mathcal{P}^{T}=\left(\begin{array}{cc}
\mathcal{A}_{11} & \mathcal{A}_{12} \\
0 & \mathcal{A}_{22}
\end{array}\right)
$$

where \mathcal{A}_{11} and \mathcal{A}_{22} are square matrices of order at least one. A pattern is irreducible if it is not reducible.

Recall that the inertia of a matrix A is an ordered triple $i(A)=\left(n_{+}, n_{-}, n_{0}\right)$ where n_{+}is the number of eigenvalues of A with positive real part, n_{-}is the number of eigenvalues of A with negative real part, and n_{0} is the number of eigenvalues of A with zero real part. The inertial of zero-nonzero pattern \mathcal{A} is $i(\mathcal{A})=\{i(A) \mid A \in Q(\mathcal{A})\}$. An $n \times n$ zero-nonzero pattern \mathcal{A} is an inertially arbitrary pattern (IAP) if given any ordered triple $\left(n_{+}, n_{-}, n_{0}\right)$ of nonnegative integers with $n_{+}+$ $n_{-}+n_{0}=n$, there exists a real matrix $A \in Q(\mathcal{A})$ such that $i(A)=\left(n_{+}, n_{-}, n_{0}\right)$. Equivalently, \mathcal{A} is an inertially arbitrary pattern if all the $(n+1)(n+2) / 2$ ordered triples $\left(n_{+}, n_{-}, n_{0}\right)$ of nonnegative integers with $n_{+}+n_{-}+n_{0}=n$ are in $i(\mathcal{A})$; see, e.g., [2-4].

Ber-Lin Yu and Ting-zhu Huang are with the School of Mathematical Science, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054 China e-mail: (berlin.yu@gmail.com).

Let S be a nonempty, proper subset of the set of all $(n+$ 1) $(n+2) / 2$ inertias for any $n \times n$ zero-nonzero pattern \mathcal{A}. If $S \subseteq i(\mathcal{A})$ is sufficient for \mathcal{A} to be inertially arbitrary, then S is said to be a critical set of inertias for zero-nonzero patterns of order n and if no proper subset of S is a critical set of inertias, S is said to be a minimal critical set of inertias for zero-nonzero patterns of order n; see, e.g., [3]. All minimal critical sets of inertias for irreducible zero-nonzero patterns of order 2 are identified. But as posed in [3], identifying all minimal critical sets of inertias for irreducible zero-nonzero patterns of order $n \geq 3$ is an open question. Also open is the minimum cardinality of such a set.

In this note, we concentrate on the minimum cardinality of all critical sets of inertias for irreducible zero-nonzero patterns of order 4. It is shown that the minimum cardinality of all critical sets of inertias for 4×4 irreducible zero-nonzero patterns is 3 .

II. Preliminaries and main results

A zero-nonzero pattern $\mathcal{A}=\left[\alpha_{i j}\right]$ has an associated digraph $D(\mathcal{A})$ with vertex set $\{1,2, \ldots, n\}$ and for all i and j, an arc from i to j if and only if $\alpha_{i j}$ is $*$. A (directed) simple cycle of length k is a sequence of $k \operatorname{arcs}\left(i_{1}, i_{2}\right),\left(i_{2}, i_{3}\right), \ldots,\left(i_{k}, i_{1}\right)$ such that the vertices i_{1}, \ldots, i_{k} are distinct. The digraph of a matrix is defined analogously; see, e.g., [1]. A digraph is strongly connected if for each vertex i and every other vertex $j(\neq i)$, there is an oriented path from i to j. A zero-nonzero pattern \mathcal{A} is irreducible if and only if its digraph, $D(\mathcal{A})$, is strongly connected. For any digraph D, let $G(D)$ denote the underlying multigraph of D, i.e., the multigraph obtained from D by ignoring the direction of each arc; see, e.g., [2].

The following lemma 1 was stated as Proposition 2 in [2], which is useful to determine whether a zero-nonzero pattern is inertially arbitray or not.

Lemma 1. Let \mathcal{A} be an irreducible $n \times n$ zero-nonzero pattern and let $A \in Q(\mathcal{A})$. If T is a direct subgraph of $D(\mathcal{A})$ such that $G(T)$ is a tree, then \mathcal{A} has a realization that is diagonally similar to A such that each entry corresponding to an arc of T is 1 .

We proceed by showing the following zero-nonzero pattern is nearly inertially arbitrary.

Theorem 1 Let

$$
\mathcal{N}=\left(\begin{array}{cccc}
* & * & 0 & * \\
* & * & * & 0 \\
0 & 0 & 0 & * \\
* & 0 & * & 0
\end{array}\right) .
$$

Then the zero-nonzero pattern \mathcal{N} allows all inertias $\left(n_{1}, n_{2}\right.$, n_{3}) with nonnegative integers n_{1}, n_{2} and n_{3} such that $n_{1}+$ $n_{2}+n_{3}=4$ except inertia $(0,0,4)$.

Proof. Since $(0,0,4) \in i(\mathcal{N})$ if and only if \mathcal{N} allows some characteristic polynomial of the form

$$
x^{4}+(p+q) x^{2}+p q
$$

for $p, q \geq 0$. Suppose A is a realization of \mathcal{N}. By Lemma 1 , without loss of generality, let

$$
A=\left(\begin{array}{llll}
a & 1 & 0 & b \\
c & d & 1 & 0 \\
0 & 0 & 0 & 1 \\
e & 0 & f & 0
\end{array}\right)
$$

for some nonzero real numbers a, b, c, d, e and f. Then the characteristic polynomial of A is

$$
\begin{aligned}
p_{A}(x)= & x^{4}-(a+d) x^{3}+(a d-c-b e-f) x^{2} \\
& +[(a+d) f+b d e] x+c f-a d f-e
\end{aligned}
$$

Suppose

$$
p_{A}(x)=x^{4}+(p+q) x^{2}+p q
$$

Then

$$
a+d=0
$$

and

$$
(a+d) f+b d e=0
$$

It follows that

$$
b d e=0
$$

It is a contradiction. Hence, \mathcal{N} does not allow $(0,0,4)$.

Next we show that the zero-nonzero pattern \mathcal{N} allows all the remaining inertias. Note that for an arbitrary zerononzero pattern $\mathcal{N},\left(n_{+}, n_{-}, n_{0}\right) \in i(\mathcal{N})$ if and only if $\left(n_{-}, n_{+}, n_{0}\right) \in i(\mathcal{N})$. So to complete the proof, it suffices to show that \mathcal{N} allows inertias $(1,0,3),(2,0,2),(1,1,2)$, $(3,0,1),(2,1,1),(4,0,0),(3,1,0)$ and $(2,2,0)$.

Consider realizations of \mathcal{N}

$$
\begin{aligned}
& \left(\begin{array}{cccc}
-2 & 1 & 0 & \frac{1}{2} \\
-\frac{22}{3} & 3 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-\frac{4}{3} & 0 & 1 & 0
\end{array}\right),\left(\begin{array}{cccc}
1 & 1 & 0 & \frac{4}{3} \\
-\frac{1}{2} & 1 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-\frac{3}{4} & 0 & \frac{1}{2} & 0
\end{array}\right) \\
& \left(\begin{array}{cccc}
\frac{1}{2} & 1 & 0 & 2 \\
\frac{1}{4} & \frac{1}{2} & 1 & 0 \\
0 & 0 & 0 & 1 \\
2 & 0 & -3 & 0
\end{array}\right),\left(\begin{array}{cccc}
2 & 1 & 0 & -2 \\
4 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 \\
4 & 0 & 2 & 0
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left(\begin{array}{cccc}
\frac{1}{2} & 1 & 0 & \frac{2}{3} \\
-\frac{3}{4} & \frac{1}{2} & 1 & 0 \\
0 & 0 & 0 & 1 \\
-3 & 0 & 3 & 0
\end{array}\right),\left(\begin{array}{cccc}
2 & 1 & 0 & \frac{11}{2} \\
4 & 2 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-2 & 0 & 4 & 0
\end{array}\right) \\
& \left(\begin{array}{cccc}
1 & 1 & 0 & -2 \\
1 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 \\
2 & 0 & 3 & 0
\end{array}\right) \text { and }\left(\begin{array}{cccc}
1 & 1 & 0 & 1 \\
\frac{1}{2} & -2 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-\frac{3}{2} & 0 & 1 & 0
\end{array}\right)
\end{aligned}
$$

with inertias $(1,0,3),(2,0,2),(1,1,2),(3,0,1),(2,1,1)$, $(4,0,0),(3,1,0)$ and $(2,2,0)$, respectively. It follows that \mathcal{N} allows all inertias except $(0,0,4)$.

Corollary 1. Let S be a nonempty, proper subset of the set of all $(n+1)(n+2) / 2$ inertias for 4×4 irreducible zero-nonzero patterns. If S is a critical set of inertias, then $(0,0,4) \in S$.

Proof. By a way of contradiction assume that $(0,0,4)$ does not belong to S. Then S must contain some of the rest of inertias. By Theorem $1, S \subseteq i(\mathcal{N})$ and \mathcal{N} is not inertially arbitrary. It follows that S is not a critical set of inertias; a contradiction.

The following result was stated as Theorem 4 in [2].
Lemma 2. Let the zero-nonzero pattern of order 4

$$
\mathcal{M}=\left(\begin{array}{llll}
0 & * & 0 & 0 \\
* & 0 & * & 0 \\
0 & 0 & * & * \\
* & 0 & 0 & *
\end{array}\right)
$$

Then \mathcal{M} allows all inertias $\left(n_{1}, n_{2}, n_{3}\right)$ with nonnegative integers n_{1}, n_{2} and n_{3} such that $n_{1}+n_{2}+n_{3}=4$ except $(1,0,3),(0,1,3),(2,0,2)$ and $(0,2,2)$.

The following corollary indicates that the minimum cardinality of critical sets of inertias for irreducible 4×4 zero-nonzero patterns is at least 2 .

Corollary 2. There is no critical set of inertias with a single inertia for irreducible 4×4 zero-nonzero patterns. Moreover, if S is a critical set of inertias for irreducible 4×4 zero-nonzero patterns, then S must contain $(0,0,4)$ and one of the inertias $(1,0,3),(0,1,3),(2,0,2)$ and $(0,2,2)$.

Proof. The first part of Corollary 2 follows directly from Theorem 1 and Lemma 2. If S is a critical set of inertias, then $(0,0,4) \in S$ by Corollary 1. If none of the inertias $(1,0,3),(0,1,3),(2,0,2)$ and $(0,2,2)$ is in S, the $S \subseteq i(\mathcal{M})$ in Lemma 2. But it is clear that \mathcal{M} is not inertially arbitrary. It follows that S is not a critical set of inertias; a contradiction.

Theorem 2. Let the zero-nonzero pattern of order 4

$$
\mathcal{P}=\left(\begin{array}{llll}
* & * & * & * \\
* & * & 0 & 0 \\
* & 0 & 0 & 0 \\
* & 0 & 0 & 0
\end{array}\right)
$$

International Journal of Engineering, Mathematical and Physical Sciences
 ISSN: 2517-9934
 Vol:4, No:1, 2010

Then \mathcal{P} allows all inertias $\left(n_{1}, n_{2}, n_{3}\right)$ with nonnegative integers n_{1}, n_{2} and n_{3} such that $n_{1}+n_{2}+n_{3}=4$ except the only inertias $(4,0,0),(0,4,0),(3,1,0),(1,3,0)$ and $(2,2,0)$.

Proof. Since \mathcal{P} requires singularity, it follows that all of the inertias $(4,0,0),(0,4,0),(3,1,0),(1,3,0)$ and $(2,2,0)$ are not allowed by \mathcal{P}.

Consider realizations of \mathcal{P}

$$
\begin{aligned}
& \left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
-2 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0
\end{array}\right),\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0
\end{array}\right), \\
& \left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
-1 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0
\end{array}\right),\left(\begin{array}{cccc}
2 & 1 & 1 & 1 \\
-3 & -2 & 0 & 0 \\
1 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0
\end{array}\right), \\
& \left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
-1 & 2 & 0 & 0 \\
-2 & 0 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right) \text { and }\left(\begin{array}{cccc}
-1 & 1 & 1 & 1 \\
-3 & 2 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
2 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

with inertias $(0,0,4),(1,0,3),(2,0,2),(1,1,2),(3,0,1)$ and $(2,1,1)$, respectively. It follows that the zero-nonzero pattern \mathcal{P} allows all inertias except $(4,0,0),(0,4,0),(3,1,0)$, $(1,3,0)$ and $(2,2,0)$.

It was known that the set $\{(0,0,4),(1,0,3),(4,0,0)\}$ is a minimal critical set of inertias for irreducible zero-nonzero patterns of order 4 . Other minimal critical sets on inertias can be obtained by replacing $(4,0,0)$ or $(1,0,3)$ by its reversal; see, e.g., [3, Theorem 7]. As mentioned in Section 6 in [3], for $n=4$, it is unknown that whether there are other critical sets of inertias. Also mentioned is that the minimum cardinality of all critical sets of inertias for 4×4 irreducible zero-nonzero patterns is at most 3 . The next theorem answers this problem completely.

Theorem 3. The minimum cardinality of all critical sets of inertias for irreducible 4×4 zero-nonzero patterns is 3 .

Proof. By a way of contradiction suppose that the minimum cardinality of all critical sets of inertias is 2 . Let S be an arbitrary critical set of inertias with cardinality 2 . Then, by Corollary $2, S$ must contain $(0,0,4)$ and only one of the inertias $(1,0,3),(0,1,3),(2,0,2)$ and $(0,2,2)$.

Case 1. S contains inertias $(0,0,4)$ and $(1,0,3)$ or its reversal. Then S does not contain all the inertias $(4,0,0)$, $(0,4,0),(3,1,0),(1,3,0)$ and $(2,2,0)$. By Theorem 2, we have $S \subseteq i(\mathcal{P})$ and \mathcal{P} is not inertially arbitrary. It follows that S is not a critical set of inertias for irreducible zero-nonzero patterns of order 4, which is a contradiction.

Case 2. The case that S contains inertias $(0,0,4)$ and $(2,0,2)$ or its reversal is similar to Case 1 . We omit its proof.

Acknowledgment

This research was supported by NSFC (60973015), Sichuan Province Sci. \& Tech. Research Project (2009HH0025) and the Youth Foundation of Huaiyin Institute of Technology (2917384).

References

[1] R. A. Horn, C. R. Johnson, Matrix Analysis, Cambridge University Press, New York, 1995.
[2] I. J. Kim, J. J. McDonald, D. D. Olesky, P. van den Driessche, Inertias of zero-nonzero patterns, Linear and Multilinear Algebra 55(3)(2007) 229238.
[3] I. J. Kim, D. D. Olesky, P. van den Driessche, Critical sets of inertias for matrix patterns, Linear and Multilinear Algebra 57(3)(2009) 293-306.
[4] M. S. Cavers, K. N. Vander Meulen, Inertially arbitrary nonzero patterns of order 4, Electron. J. Linear Algebra 16(2007) 30-43.

