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Abstract—In this paper, we present an algorithm for computing a
Schur factorization of a real nonsymmetric matrix with ordered diag-
onal blocks such that upper left blocks contains the largest magnitude
eigenvalues. Especially in case of multiple eigenvalues, when matrix
is non diagonalizable, we construct an invariant subspaces with few
additional tricks which are heuristic and numerical results shows the
stability and accuracy of the algorithm.
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I. I NTRODUCTION

AReal square matrixA yields the decomposition of the
form [6]

A = QTQT , (1)

where Q is an orthogonal matrix andT is a block upper
triangular matrix (also called ‘quasi triangular’ matrix).

T =




T11 T12 ... T1m

0 T22 ... T2m

...
...

. ..
0 0 Tmm


 = D + N, (2)

where D is a diagonal matrix, which has all the diagonal
elements are1 × 1 and 2 × 2 blocks andN is strictly upper
triangular. Scalar blocks contain the real eigenvalues andthe
complex conjugate eigenvalues correspond to the2×2 blocks.
In general, these2 × 2 and1 × 1 diagonal blocks can appear
in any arbitrary order and reordered these blocks by swapping
as our requirement, but this algorithm gives an ordered real
Schur form.

There are some subroutines in LAPACK Library [8] and
in NAG Library, which computes the Schur factorization of a
nonsymmetric matrix for the user. In contrast of these work,
the real Schur form has much less predictable structure. The
new developed algorithm takes care of this irregularity and
attains higher efficiency for a wide range of setting. No matter
matrix is diagonalizable or not. The problem of reordered
eigenvalues of a matrix in Schur factorization arises in the
computation of the invariant subspaces. Swapping two1 × 1
blocks or swapping1×1 and2×2 blocks proposed in [2] and
later Bai and Demmel [1] proposed an algorithm for swapping
2 × 2 blocks.

The algorithm is based on the original idea proposed by
Schur for real matrix [4], [6]. If we factorize a matrix with
simple eigenvalues we can apply power method to find out the
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dominant eigenpair but if matrix has multiple eigenvalues,the
dominant eigenpair can be chosen by any method suggested
in EISPACK [7]. Our main concentration is to calculate
the orthogonal invariant subspaces for real Schur form with
ordered diagonal blocks without using unitary matrix, evenif
it has complex eigenvalues. Which plays an important role in
many engineering problems.

The rest of the article is organized as follows: In section 2,
we describe how to handle the real and complex eigenvalues,
separately. Section 3 contains our main algorithm of real Schur
form, applications and advantages. Finally, in section 4, we
present numerical experiments. Henceforth the notation used
in this paper are: matrices and vectors will be boldface capital
letters and lower case letters respectively, if nothing else is
stated.

A. Construction of orthogonal matrix:

Let A be a nonsymmetric real matrix with eigenvalues and
corresponding eigenvectors are real, complex or both. Letλ
be an eigenvalue andu an associated eigenvector, choose so
that ‖u‖2 = 1. Now we defineU be an orthogonal matrix
that hasu as its first column. In this section, we discuss
both cases, for real and complex eigenvalues, separately.
Theoretically this may not be required but numerically it is
meaningful.

1) Case I:: First we discuss the case of real eigenvalues.
For simplicity, we choose the columns of orthogonal matrix
U as standard basis vectors ofRn with u as its first column,
i.e. U = [u, V] = (u, e2, ..., en). Since u is a calculated
eigenvector, it may not be orthonormal to other columns. To
reduce these vectors in orthonormal vectors we use Gram
Schmidt processor [6]. For this processor the vectors should
be linearly independent but it is not always true. Most
likely this type of situation occurs whenu is an eigenvector
corresponding to multiple eigenvalue. To face such problems
we make a simple arrangement. Sinceei’s are elements of
standard basis, first component ofu must be zero for linearly
dependent. To deal with this we make a slight change by
taking a constantc instead of zero as first component. For
this modification, without loss of generality, we choose that
column which has same number as first nonzero element of
first column. Inside algorithm matrices denoted by capital
letters only.
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Algorithm 1.

1. Calculate one eigenpair (λ, u) s.t. ‖ u ‖2= 1 used as
input.
2. Consider an orthogonal matrix s.t.

U = [u, V ] = [u, v1, ..., vn−1] = [u1, ..., un]

3. If U is linearly independent goto step 4.
for i = 2, n

if (ui,1 6= 0) then
u1,i = c andui,i = 1
else
ui = ei

end if
end do

4. Make it orthonormal by Gram Schmidt process
5. A1 = UT AU

2) Case II:: Here we deals with complex eigenvalues. Let
u + iv, where u and v are real vectors, be the complex
eigenvector associated with the complex eigenvalueα + iβ.
Thenα− iβ is the remaining conjugate eigenvalue andu− iv
the corresponding eigenvector which are linearly independent
over complex field because these eigenvectors are associated
with distinct eigenvalues.

Let a = a1 + ia2 andb = b1 + ib2 ∈ C

a(u + iv) + b(u − iv) = 0 ⇒ a = 0, b = 0.

(a + b)u + i(a − b)v = 0.

{(a1 + b1)u+(−a2 + b2)v}+ i{(a2 + b2)u+(a1− b1)v} = 0.

(a1 + b1)u + (−a2 + b2)v = 0 , (a2 + b2)u + (a1 − b1)v = 0.

a1 + b1 = 0 = −a2 + b2 = a2 + b2 = a1 − b1. Thus u and
v are linearly independent over real field. Now we define an
orthogonal matrix as

U = [u, v, V ] = (u, v, e3, ..., en). (3)

In the case of complex multiple eigenvalues, which is rarely
occur in practice, we will retrace the same path that we have
just traversed for real multiple eigenvalues.

B. Real Schur Decomposition:

When working with nonsymmetric matrices, we must be
prepared to deal with complex numbers. Since complex arith-
metic is much slower than real arithmetic. To avoid complex
arithmetic as much as possible, we arrangeU is a real orthog-
onal matrix. It turns out that we can bring a matrix nearly to
triangular form, called block triangular matrix, without using
complex arithmetic. A quasi triangular matrixT ∈ Rn, where
each main diagonal blocks are either1× 1 or 2× 2, and each
2 × 2 block has complex eigenvalues.

Let λ be any eigenvalue of the matrixA ∈ Rn×n. Now
let us focus on the complex case, supposeAx = λx, where
x = u + iv, andλ = α + iβ, α, β ∈ R and β 6= 0. Then its
numerical representationAZ = ZB implies that the columns
of Z = [u, v] span an invariant subspace ofA and block
B has complex eigenvalues ofA. Since u, v are linearly

independent vector, otherwiseu andv must satisfyAu = λu
and Av = λv, and λ must be real. Finally, there exist an
orthogonal matrix as discussed in§2 such that

A1 =

[
C ∗ ... ∗∗ ... ∗0 0 Â0 0

]
,

whereÂ ∈ R(n−2×n−2) andC is similar matrix toB of order
2.
Remark: For real eigenvalueŝA ∈ R(n−1×n−1).

Compute the Schur factorization of matrixA is given by

AU=UT,

whereU is orthogonal andT is block triangular matrix. The
main diagonal blocks are ordered according to decreasing
magnitude of the corresponding eigenvalues. The columns of
the orthogonal matrixU are the Schur vectors.

Algorithm 2:

U : Defined as identity matrix
m = n and l = 0
while (m ≥ 2 ) do

1. Calculate dominant eigenpair of matrixA

2. if β = 0 then
2.1 λ = α andx = u
2.2 Apply algorithm1 to getA1 andQ1

2.3 A = 0;
Ai,j = A1

i+1,j+1, for i, j = 1, m − 1
otherwise

2.4 λ = α + iβ andx = u + iv
2.5 Apply algorithm1 for (2.1) to getA1 andQ1

2.6 A = 0;
Ai,j = A1

i+2,j+2, for i, j = 1, m − 2
step 2 end

3. l = n − m
Q : Defined as identity matrix
Qi+l,j+l = Q1

i,j , for i, j = 1, m

4. if m = n thenA1 = QT AQ
otherwise

A1 = QT B Q
end if

B = A1

5. U = U Q

6. m = m − 1, for real eigenvalue
m = m − 2, for complex eigenvalue

end while loop

7. T = UT AU

C. Applications and Advantages:

An application of this procedure found for solving the
algebraicRiccati equation [5] which arises in control theory,
and other lies in the stable reduction of other problems to
a more manageable form. Some important examples are the
algorithm for solving theSylvester equation, and algorithm
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for finding few dominant cluster/multiple eigenvalues byBlock
Arnoldi method [3]. One of the best advantage of the Schur
factorization is that it can be computed using only orthogonal
transformations, which ensures good numerical behavior. A
further consequence of the fact thatQ is orthogonal is that
this factorization leads to a stable and reliable method for
computing invariant subspaces.

D. Numerical Experiments:
In this section, we present numerical results. For numerical

experiments we apply this algorithm on random matrices of
large as well as small order, which shows the accuracy of
the method. We have used this algorithm for finding multiple
eigenvalues of elliptic eigenvalue problems, in which its
performance are not only satisfactory but highly accurate.To
demonstrate the performance it is not possible to take large
order of matrix, for convenience choose two examples and
try to cover all possible cases.
Ex1. In this example we choose a8 × 8 real nonsymmetric
matrix which has real as well as complex eigenvalues.


0.009 −0.571 0.000 0.005 0.236 −0.134 2.419 1.032
0.668 −0.578 0.000 0.009 2.341 1.206 −0.676 2.604
0.666 0.573 1.002 0.004 0.919 −0.721 1.002 −0.762
0.335 0.004 0.008 1.006 0.003 6.298 0.338 8.206
1.008 −3.230 2.003 0.002 0.693 1.207 −0.894 2.087
0.472 7.974 −0.486 3.780 1.067 0.394 0.047 −0.222
4.054 0.000 0.631 0.184 3.712 0.002 1.004 0.008
0.220 −2.292 6.073 0.543 −0.124 2.227 0.001 3.000




The eigenvalues of the matrix are:
7.90917451, 4.49188024, 1.25746458,−0.04245692,− 1.04853973 ± 3.61163808,−2.49449148 ± 0.53538985.


7.909 3.161 −0.109 −0.238 1.474 −4.627 4.491 −0.630
0.000 4.492 1.265 2.295 0.901 −2.671 −2.405 3.240
0.000 0.000 2.255 5.945 3.141 −0.422 2.215 0.892
0.000 0.000 −4.029 −4.352 −3.439 4.233 0.420 −0.944
0.000 0.000 0.000 0.000 −2.492 −0.364 −0.208 2.989
0.000 0.000 0.000 0.000 0.788 −2.497 −1.466 −2.261
0.000 0.000 0.000 0.000 0.000 0.000 1.257 2.088
0.000 0.000 0.000 0.000 0.000 0.000 0.000 −0.042




Clearly the above matrix is in quasi triangular form which
diagonal blocks contains decreasing magnitude eigenvalues,
where scaler blocksT11, T22, T55 and T66 have real
eigenvalues and complex conjugate eigenvalues correspondto
2 × 2 blocksT33 andT44.

Ex2. This example contains a4 × 4 matrix in form of
2× 2 blocks, one of them is Jordan block form with multiple
eigenvalues and other has complex conjugate pair.

A =




2.5e − 5 1.0 0.0 0.0
0.0 2.5e − 5 0.0 0.0
0.0 0.0 4.5e − 5 3.4e − 5
0.0 0.0 −5.6e − 5 6.0e − 5




The eigenvalues of matrix A are:
0.00002500, 0.00002500, 0.00005250 ± 0.00004299 and
largest magnitude is| λ |= 0.00006786, which is a complex
eigenvalue.

T =




4.5e − 5 3.4e − 5 0.0 0.0
−5.6e − 5 6.0e − 5 0.0 0.0

0.0 0.0 2.5e − 5 1.0
0.0 0.0 0.0 2.5e − 5




II. CONCLUSION

In this paper I present an algorithm for Schur factorization
of a real nonsymmetric matrix which diagonal elements are its
eigenvalues in nondecreasing order. I have shown by numerical
experiments the algorithm works for simple as well as multiple
eigenvalues.
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