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Abstract—Electroencephalogram (EEG) recordings are often 

contaminated with ocular and muscle artifacts. In this paper, the 
canonical correlation analysis (CCA) is used as blind source 
separation (BSS) technique (BSS-CCA) to decompose the artifact 
contaminated EEG into component signals. We combine the BSS-
CCA technique with wavelet filtering approach for minimizing both 
ocular and muscle artifacts simultaneously, and refer the proposed 
method as wavelet enhanced BSS-CCA. In this approach, after 
careful visual inspection, the muscle artifact components are 
discarded and ocular artifact components are subjected to wavelet 
filtering to retain high frequency cerebral information, and then clean 
EEG is reconstructed. The performance of the proposed wavelet 
enhanced BSS-CCA method is tested on real EEG recordings 
contaminated with ocular and muscle artifacts, for which power 
spectral density is used as a quantitative measure. Our results suggest 
that the proposed hybrid approach minimizes ocular and muscle 
artifacts effectively, minimally affecting underlying cerebral activity 
in EEG recordings. 
 

Keywords—Blind source separation, Canonical correlation 
analysis, Electroencephalogram, Muscle artifact, Ocular artifact, 
Power spectrum, Wavelet threshold.  

I. INTRODUCTION 
LECTROENCEPHALOGRAM (EEG) measures 
electrical potentials on the scalp and provides a 

continuous measure of cortical functions. These brain signals 
typically are of very low amplitude and hence they are prone 
to noise [1]. During signal acquisition, the EEG recordings are 
often contaminated with muscle, head movement and ocular 
artifacts. These artifacts may originate due to many reasons 
such as eye blinks and eye ball rotations, head movements, 
biting, chewing etc. The artifacts produce large electrical 
potentials and spread across the scalp to contaminate the EEG 
signal, and ultimately affect the assessment of neurological 
phenomenon. The ocular artifacts are generally high 
amplitude and low frequency signals affecting delta and theta 
band, and the muscle artifacts affect high frequency (alpha, 
beta and gamma) bands of EEG power spectrum [2], thus in 
turn affecting extraction of valid information from the EEG 
recordings and its interpretation. Hence minimization of these 
artifacts forms an important preprocessing step before making 
further quantitative analysis of the EEG data. 
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Several methods have been proposed in the literature for 
minimization of artifacts in EEG signals. The main ocular 
artifact correction methods are as follows. Artifact avoiding or 
eye fixation, artifact rejection, linear filtering, regression 
based methods [3]-[5], blind source separation (BSS) based 
methods (including principal component analysis (PCA) and 
different versions of independent component analysis (ICA)) 
[5]-[8], singular value decomposition (SVD) based techniques 
[9], adaptive noise cancellation based methods [10], and 
methods that make use of some special properties of artifacts 
[11], [12], etc. However, the ICA based methods have become 
one of the most successful methods applied to multichannel 
EEG recordings. The ICA is also used in minimization of 
muscle artifacts. In addition to this, BSS and SVD based 
methods are also found useful for muscle noise correction. 
Recently, BSS based method using canonical correlation 
analysis (CCA) technique has been introduced to remove 
muscle artifacts, and has produced better performance [13]. 

However, each of the methods is having its own advantages 
and disadvantages, and improvements in the performance of 
the methods have been suggesting in the literature. Many of 
the approaches minimize artifacts, by taking ocular and 
muscle artifacts separately into consideration. There are many 
methods for correcting either ocular or muscle artifacts 
tailoring for a particular application. In this paper, the 
canonical correlation analysis (CCA) is used as blind source 
separation (BSS) technique for minimization of both ocular 
and muscle artifacts simultaneously. For ocular artifact 
reduction, we have used wavelet-based enhancement of CCA 
components. The performance of the method is tested on real 
EEG signals using power spectrum as a quantitative measure. 

II. METHODS 
The BSS approaches are increasingly being used in 

biomedical signal processing involving analysis of 
multivariate time series data such as EEG [17]. In this 
approach, the observed multichannel signals are assumed to 
reflect a linear combination of several sources which are 
associated with underlying physiological processes, artifacts 
and noise. The BSS approach aims to recover a set of 
unobserved source signals using only a set of observed 
mixtures of sources. Typically, the observations are measured 
at the output of an array of sensors such as EEG electrodes, 
where each sensor receives a different combination of the 
source signals.  
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The standard formulation of the linear instantaneous BSS 
problem consists of a source mixture model, in which 

M observed signals ( ) [ ( ), ( ), ..., ( )]1 2
TX t x t x t x tM= , 

1, 2, ...,t N= , where T denotes transposition, are a linear 
combination of K  unobserved source signals 

( ) [ ( ), ( ), ..., ( )]1 2
TS t s t s t s tK= . This can be expressed as 

( ) ( )X t AS t= , where A  is an M K× matrix whose columns 
represent the source sensor projections. The number of 
sources, their waveform and sensor projection A  are 
unknown. The objective of BSS is to determine K , ( )S t  and 
A  from ( )X t  using only minimal assumptions. 

The number of sources is often assumed to be the number 
of sensors, that is K M= . To determine the source waveform 
estimates ˆ( )S t which is approximately equal to ( )S t , requires 
estimate of a mixing matrix Â  which is approximately equal 
to A , which is used to form an approximate P M×  demixing 
matrix Ŵ to obtain source waveform estimates ˆ ˆ( ) ( )S t WX t= . 
Finding a matrix estimate Â  generally involves an 
optimization problem with a goal of minimizing mutual 
dependence of the source waveform estimates with reference 
to either signal time structure, or higher order statistics or 
information theoretic measures. 

A. BSS using CCA 
There are many ways to solve the BSS problem depending 

on the definition of contrast function. The ICA method tries to 
make the signals as non-Gaussian as possible. However, in 
PCA and most of the ICA algorithms, the temporal 
correlations are not taken into consideration for solving 
contrast functions. The samples in the time may be rearranged 
arbitrarily and the method will give the same solution. This 
may seem as strength, but the fact is that almost all the 
temporal information in the signal is thrown away. In contrast 
to ICA, the CCA based BSS method utilizes the 
autocorrelation in the source signals as contrast function [14].   

In real-world situation, most of the signals have certain 
autocorrelation, and the multichannel EEG signals also have 
temporal or spatial structure causing an autocorrelation in the 
signal. Considering only statistical distribution of the sample 
values as in most of ICA cases, ignoring the temporal or 
spatial relations within the source signals, one may discard the 
relevant temporal information. But the CCA can solve the 
BSS problem with much less computational effort by utilizing 
the temporal autocorrelation structure of the source signals, in 
particular for the EEG data. 

The CCA is used to measure the linear relationship between 
two multidimensional variables, by finding two bases one for 
each variable, and the bases are optimal with respect to 
correlations. Thus, the CCA finds two bases in which the 
correlation matrix between the variables is diagonal and the 
correlations on the diagonal are maximized [13], [15]. Since 
BSS is an ill posed problem, some statistical constraints on the 
sources have to be added to solve it. The CCA solves the 

problem by forcing the sources to be mutually uncorrelated 
and maximally correlated with a predefined function. The 
proposed BSS using CCA approach requires the sources to be 
uncorrelated and to be maximally correlated with a given 
function, in this case which is time shifted version of the 
original signal.  

Consider the observed data matrix ( )X t and its temporally 
delayed version ( ) ( 1)Y t X t= − . The CCA finds two sets of 
basis functions, one for X  and another for Y , such that the 
correlations between the projections of the variables on to 
these basis vectors are mutually maximized. The total 
covariance matrix is given by 

C Cxx xyC
C Cyx yy

=
⎡ ⎤
⎢ ⎥
⎣ ⎦

=
T

x x
E

y y

⎡ ⎤⎛ ⎞⎛ ⎞
⎢ ⎥⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎢ ⎥⎣ ⎦

,  

where Cxx and Cyy  are the within-set covariance matrices of 

X and Y  respectively, and Cxy  is the between-sets 

covariance matrix ( TC Cxy yx= ), and E denotes expectation 

operation. The canonical correlation between X and Y can be 
found by solving the eigen-value 

equations, 1 1 2ˆ ˆC C C C w wxx xy yy yx x xρ− − = ,

1 1 2ˆ ˆC C C C w wyy yx xx xy y yρ− − = , where, the eigen values 2ρ are 

the squared canonical correlations and the eigen vectors 
ŵx and ŵy are the normalized canonical correlation basis 

vectors. Since the solutions are related, only one of the eigen 
value equations needs to be solved to get the demixing matrix 

W . The estimates of the sources are given by ˆ ˆ( ) ( )TS t W X tx= . 
The CCA gives the source signals that are uncorrelated with 
each other, maximally autocorrelated and ordered by 
decreasing autocorrelation. 

The sum of uncorrelated signals will have an 
autocorrelation function which is less than or equal to the 
maximum of the autocorrelation functions of the individual 
signals. Since CCA maximizes the correlation, it will not 
choose a mixture of the source signals, since that would give 
less correlation than if one of the source signals in the data is 
chosen. The CCA approach is used as a BSS technique to 
separate ocular and muscle artifacts in multichannel EEG 
recordings. It is to be noted that simultaneous reduction of 
ocular and muscle artifacts in EEG using CCA has not been 
yet studied. 

B. Muscle Artifact Correction by Component Elimination 
The artifact contaminated EEG data is applied to CCA 

algorithm to get component signals. Due to broad frequency 
spectrum of muscle noise in EEG recordings, muscle artifacts 
tend to have properties of temporally white noise, thus having 
low autocorrelation. As a consequence, the muscle artifact 
source components are always those with the lowest 
autocorrelation. We manually identify the components 
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contributing to the muscle artifact by visualizing correlation 
structure. Then the EEG is reconstructed by projecting the 
selected non-artifact components back into the scalp. We refer 
this technique to as component elimination method. 

The muscle noise rectified EEG is given by 
ˆ( ) ( )X t AS tm m= , where 1ˆ ˆA W −=  is the estimate of mixing 

matrix and ( )S tm  is the components after making those 
components zeros which contribute to muscle artifact. 
However, the muscle artifact corrected EEG data ( )X tm may 
have ocular artifact which is to be rectified. Hence the 
components ( )S tm are subjected to the next step where the 
ocular artifact sources are considered for further processing.  

C. Ocular Artifact Correction by Component Filtering 
Most EEG artifact removal techniques either consider only 

ocular artifacts or only muscle artifacts, while, to our 
knowledge, not much effort has been made on the 
simultaneous removal of ocular and muscle artifacts. 
However, we use CCA to minimize both ocular and muscle 
artifacts simultaneously. 

It is possible that the high frequency cerebral activity may 
leak into the components marked as artifactual, and that may 
be lost if the component is rejected during reconstruction [18]. 
To overcome the leakage of cerebral components to artifactual 
components, we introduce filter to the ocular artifactual 
components to retain the high frequency cerebral activity in 
them. For this purpose, we have used wavelet based filtering 
to recover the neural activity in the ocular components, 
thereby enhancing the CCA. We refer this method to as 
wavelet filtered component inclusion method. We also 
quantify the spectral distortions of EEG for CCA and wavelet 
enhanced CCA.  

The ocular artifact components are manually identified after 
CCA decomposition and subjected to wavelet filter to retain 
the high frequency neural part. Hence no ocular artifact 
component is thrown away in the reconstruction process. We 
refer this technique to as wavelet filtered component inclusion 
method (CCA+WF). The wavelet decomposition separates the 
artifact component into low frequency ocular artifact part and 
high frequency cerebral part. The ocular artifact is considered 
as independent (uncorrelated) with EEG data, which can be 
well separated in the wavelet domain using standard threshold 
based rule [16]. 

In the proposed method, the source components having 
ocular artifact are subjected to undecimated wavelet transform 
using Daudechies 4 filter. The filtering is based on the 
threshold rule, where the wavelet coefficients greater than the 
prescribed threshold are made zero.  The threshold is 

calculated as 2 log( )TH Lσ= , where 
2 ( ) / 0.6745median Dcσ =  and L  is the length of epoch 

considered, and Dc  is the set of wavelet coefficients in 
different scales [16]. Thus, all the components having ocular 

artifacts are subjected to wavelet enhancement. The clean 
EEG  

 
Fig. 1. (a) An epoch of real EEG data contaminated with eye blinks 
and movement artifacts, and (b) CCA components of EEG data. 

 

 
Fig. 2. A part of Fp1 channel of reconstructed EEG data after (a) 
component elimination method, (b) wavelet filtered component 
inclusion (CCA+WF) method.  
 
data is obtained as ˆ( ) ( )X t AS tmoclean = , where ( )S tmo  is the 

ocular artifact corrected components from ( )S tm .  Thus, both 
muscle and ocular artifact are simultaneously processed in the 
components after decomposition using CCA. 

III. RESULTS AND DISCUSSION 
To demonstrate the effectiveness of the CCA+WF artifact 

correction method, the method is applied on different sets of 
real EEG data. In the first case, real EEG data has been 
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acquired using Neuroscan EEG system with Fz as reference. The data is recorded according to the 10-20 standard of  

 
Fig. 3. Power spectrum of Fp1 channel of reconstructed EEG data using (a) component elimination method, (b) wavelet filtered component 
inclusion (CCA+WF) method.  
 

 
Fig. 4. Percentage spectral error (in frequency range 13-70 Hz) of 
different channels for 0-2 sec interval of EEG data. The legend BSS 
denotes  CCA.  

 
electrode placement, digitized with a sampling rate of 250 Hz 
and a resolution of 12 bits. A band pass filter of 0.5 to 70 Hz 
has been used to limit the frequency band. We have chosen 
only 19 channels of EEG recordings without taking 
electrooculogram (EOG) into consideration for the analysis.  

Fig. 1(a) shows an epoch of 19 channel real EEG data 
contaminated with eye blinks and head movement artifacts. 
The eye blink artifact is getting reduced as moving towards 
the occipital region. The components obtained by applying 
CCA algorithm on this data are also shown in Fig. 1(b). The 
components accounting for blink and movement artifact are 
present at the top components (in this case first and second). 
In most of the ICA based ocular artifact correction methods, 
the ocular artifact source signals are made zero and then 
reconstructed the clean EEG data (component elimination 
method). The blink and movement artifacts are very much 
localized and cerebral information is present out side this 
interval, which will be lost if entire components are 
eliminated. A portion of the reconstructed EEG data of Fp1 
channel using the two approaches is shown in Fig. 2. 

The power spectrum of the Fp1 channel before and after 
ocular artifact correction is shown in Fig. 3. The Welch-based 
method is used for estimating power spectrum of the EEG 
signals. From the plot, it is clear that the component 

elimination method has removed high frequency information 
in the range of 30 to 40 Hz and 65 to 75 Hz. This spectral  

 
Fig. 5. (a) An epoch of real multichannel EEG contaminated with 
ocular and movement artifacts, (b) artifact minimized EEG using 
wavelet enhanced CCA (CCA+WF) method.  

 
domain distortion may introduce errors in interpreting 
quantitative EEG analysis. However, the wavelet filtered 
component inclusion method (CCA+WF) has retained most of 
the high frequency information leading to less spectral 
distortion. To quantify the comparison between the two 
methods, percentage spectral error is plotted in the Fig. 4 for 
all the channels. For calculating mean spectral error, we have 
used 13-70 Hz frequency range, because in this range ocular 
artifact is having very less frequency overlap with clean EEG. 
The error is calculated between original raw EEG data and 
reconstructed EEG data. The wavelet enhanced CCA method 
has less percentage spectral error, and as the distance form the 
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eye is increased towards occipital region, the spectral error is 
reduced. Fig. 5 shows another EEG data segment 

contaminated with severe movement artifact and artifact  

 
Fig. 6. Enlarged version of the signals of Fig. 5, (a) Fp1 channel, and (b) O2 channel, before (gray) and after (black) artifact minimization.  
 

 
Fig. 7. (a) An epoch of 10 sec ictal EEG with eye blink and muscle 
artifacts, (b) artifact minimized EEG using wavelet enhanced CCA 
(CCA+WF) method. 
 
corrected EEG data using wavelet enhanced CCA method. 
Enlarged version of the plot is shown in Fig. 6 for Fp1 and O2 
channels. It is observed that the wavelet enhanced CCA 
method has effectively corrected the ocular artifacts without 
altering much of the high frequency cerebral activity of EEG. 

In another case, the wavelet enhanced CCA method is 
tested on ictal EEG data of 21 channels. Sampling frequency 
of the data is 250 Hz. In the data, as shown in Fig. 7(a), 
predominant epileptic seizure activity can be observed on 
channels Fp2, F8, T4 and T2. The Fp1 and Fp2 channels are 
contaminated with eye blink artifacts. Muscle artifacts can be 
observed in the time interval of 0-3.9 sec on channels F7, T3, 
T5, C3, T1 and in 5-10 sec on channels F8, T4, F4, C4 and 
P4. In Fig. 7(b) results obtained by applying the wavelet 

enhanced CCA method to the ictal EEG data is shown. The 
reconstructed EEG data after exclusion of muscle artifact 
components and inclusion of  

 

 
Fig. 8. Power spectrum of (a) Fp2 channel (contaminated with eye 
blinks) in 0-5 sec interval, (b) T4 channel (contaminated with muscle 
artifact) in 5-10 sec interval. 

 
wavelet filtered ocular artifact components is also shown. It is 
observed from the Fig. 7(b) that the ictal activity is not 
distorted by the application of the wavelet enhanced CCA 
method. Fig. 8 shows power spectrum of the result for two 
different channels Fp2 while T4 having different types of 
artifacts. The Fp2 channel has ocular artifact and the T4 
channel has muscle artifact. The wavelet enhanced CCA 
method retained the high frequency spectral power, 
eliminating ocular artifact. In the other case, it has effectively 
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removed the high frequency muscle noise contribution. The 
enlarged plots of EEG signals before undergoing wavelet 
enhanced CCA algorithm and after artifact correction are 
shown in Fig. 9. From the plot, it is clear that the eye blink 
and muscle noise are eliminated without altering the ictal 
activity. 

In all the cases discussed above, we have manually selected 
the artifact components after CCA decomposition. Further 
research is needed to investigate the selection of artifact 
components automatically in a larger subject group. The 
components are ordered according to their autocorrelation in 
CCA. The ocular artifact components having maximum 
variance will be at the top and the muscle artifact components 
having less autocorrelation will be sorted at the bottom. This 
makes the method easy to automatically identify the artifact 
components. Moreover, the CCA method is computationally 
much faster than iterative ICA algorithms [15]. Hence this 
method can be made applicable for real time applications in 
clinical settings.  

IV. CONCLUSION 
We have presented a method for simultaneous minimization 

of ocular and muscle artifacts using CCA as a BBS technique. 
In this method, the CCA is used as a BSS technique for 
decomposition of multichannel EEG into components. The 
muscle artifact components are identified and discarded, and 
the ocular artifact components are subjected to wavelet 
filtering in order to retain high frequency cerebral part of 
EEG. Finally, the clean EEG is reconstructed to have both 
ocular and muscle artifacts minimized simultaneously. The 
performance of the method is tested on real EEG recordings 
using power spectrum as a quantitative measure. From the 
study, it is observed that the method has given good 
performance in rectifying both ocular and muscle artifacts, 
minimally affecting cerebral activity in EEG. The method 
does not require any reference signal for artifact minimization. 
This method can be used as preprocessing step to facilitate 
further signal processing of scalp EEG recordings, which 
could again improve the performance of many nonlinear 
measures in the EEG data analysis. 
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