
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:8, 2009

2054

Selective Mutation for Genetic Algorithms
Sung Hoon Jung

Abstract—In this paper, we propose a selective mutation method
for improving the performances of genetic algorithms. In selective
mutation, individuals are first ranked and then additionally mutated
one bit in a part of their strings which is selected corresponding to
their ranks. This selective mutation helps genetic algorithms to fast
approach the global optimum and to quickly escape local optima.
This results in increasing the performances of genetic algorithms.
We measured the effects of selective mutation with four function
optimization problems. It was found from extensive experiments that
the selective mutation can significantly enhance the performances of
genetic algorithms.

Keywords—Genetic algorithm, selective mutation, function opti-
mization

I. INTRODUCTION

Genetic algorithms (GAs), robust and systematic optimiza-

tion paradigms, have been successfully applied to many sci-

entific and engineering problems [1–11]. Their performances,

however, have been considerably limited by some problems,

typically premature convergence problems [5, 12]. Most indi-

viduals in a prematurely converged situation are located at

some local optimum areas and they can’t get out of the local

optimum areas because the exploration power of mutation

is low. If we increase the exploration power by setting the

mutation probability to high, then the speed of convergence to

global optimum areas also becomes slow. Therefore, we need

a smart method to cope with this problem.

Some methods to solve this problem have been introduced to

date [13–15]. In this paper, we propose another method to alle-

viate this premature convergence phenomenon by additionally

selective mutation of individuals according to their ranks. We

assume that if an individual has low rank, then it is far from

the global optimum. Thus, we additionally mutate the most

significant part of individual’s string. Whereas if an individual

has high rank, then we regard it to be near the global optimum

and mutate the least significant part of the individual’s string.

Since this is not always true, the additional, selective mutation

of individuals does not always help the genetic algorithms. The

probability that the selective mutation helps the genetic algo-

rithms, however, is larger than the probability that it prevents

genetic algorithms from approaching the global optimum. As

a result, this selective mutation allows genetic algorithms to

increase their performances.

In order to measure the effects of selective mutation, we

experimented our genetic algorithm with selective mutation

using four function optimization problems that have been

typically used to date. From the results, we can find that

the selective mutation can considerably contribute the search

capability of genetic algorithms. This selective mutation can

Sung Hoon Jung is with the Department of Information and Communication
Engineering, Hansung University, South Korea, e-mail: shjung@hansung.ac.kr

also be simply incorporated into the various types of genetic

algorithm without any large modification.

This paper is organized as follows. Section II describes

proposed selective mutation for genetic algorithms. The ex-

periments with four function optimization problems and their

results are given in section III. This paper concludes in section

IV

II. SELECTIVE MUTATION FOR GENETIC ALGORITHMS

Most population-based, reproductive, optimization algo-

rithms such as genetic algorithms, ant colony optimization,

and particle swarm optimization had a critical problem called

premature convergence problem [12, 13, 15]. This problem

occurs when highly fit parents in a population pool breed many

similar offsprings in the early evolution time. If the highly

fit individuals are local optima areas, then newly generated

offsprings from the parents are also near the local optima areas.

The crossover, one of the operations of genetic algorithms,

can not generate quite different offsprings from their parents

because it uses only acquired information. Thus, we regard

the crossover as an exploitation operation. The mutation, an

exploration operation, can search new areas in contrast to

the crossover, but it can also not change many bits in the

individuals because the mutation rate is too low. If we set the

mutation rate to high value, then genetic algorithms approach

the global optimum very slowly. As a result, it is very difficult

for genetic algorithms to escape this premature convergence

problem. This considerably makes the performances of genetic

algorithms degrade.

In this paper, we introduce selective mutation for solving

this problem. In most function optimization problems, their

input variables are encoded into the binary strings of indi-

viduals. Since the binary strings represent binary numbers for

each variable, the higher the bit position of string is, the larger

the bit weight has. From this, we think that it is helpful to

mutate some part of strings of individuals according to their

fitness. That is, if an individual has low fitness, then we mutate

the most significant part in order to largely change because

we regard the individual to be far from the global optimum.

Otherwise, we mutate the least significant part in order to

do fine tuning because we think that the individual has high

probability to be near global optimum. This is why we call

our method selective mutation. Algorithm 1 shows our genetic

algorithm with selective mutation.

Algorithm 1 Genetic Algorithm with Selective Mutation
//
�

: time //
// � : population size //
// � : string length //
// � : the number of grades //
// ����	�

 � � : the part of rank //
// ����	�

 � � : the part of string //
// �� : the rank of � th individual //

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:8, 2009

2055

// � : populations //
1 t � 0
2 initialize ��� �	�
3 evaluate ��� �	�
4 while (not termination-condition)
5 do

6 t � t + 1
7 select ��� ��� from ��� �������
8 recombine ��� ���
9 do crossover
10 do normal mutation
11 evaluate ��� ���
12 do selective mutation (s)
13 sort ��� �	� with fitness and rank
14 divide the strings into � parts, � �
15 divide the rank into � parts, � �
16 for ��� �

to �
17 if ��� � ��
18 do mutation a randomly selected bit in the part,� ���� �! �
19 end if

20 end for

21 end

As shown in the Algorithm 1, genetic algorithms are composed

of four key processing, initialize "$#&%(' , evaluate "$#)%(' , select"$#)%(' , and recombine "$#)%(' . We add the ’do selective mutation’

to the original genetic algorithm (see s). Selective mutation

is composed of four processes: 1) sort population "$#)%(' with

fitness and rank individuals according to the fitness, 2) divide

the string of individuals into * parts corresponding to the bit

positions, 3) divide the rank into * parts, and 4) mutate a

randomly selected bit in the string part, ",+-/.103254 , if the rank

of each individual is in the rank part "760 .

For example, assume that the population size 8 is 9;: , the

string length < is =?> , and the number of grade * is 9 . Then, the

strings are divided to two parts ",+4A@ B and the rank is divided

to two parts "C64D@ B . If the rank of an individual is E , then it

belongs to rank part "F64 , finally one bit randomly selected

in the string part "7+B is mutated. Since the string part "7+B
consists of least significant eight bits, the mutation of one bit

in the part changes a little distance from its original position in

the phenotype variable. In other case, if an individual belongs

to " 6B , then one bit randomly selected in the string part " +4
is mutated. This implies that bad individuals are changed

very much because the string part ",+4 is composed of most

significant eight bits. This is additional effect because this

selective mutation is additionally performed after the normal

mutation. This selective mutation can make genetic algorithms

fast approach to the global optimum and quickly get out

of premature convergence. As a result, it will increase the

performances of genetic algorithms.

III. EXPERIMENTAL RESULTS

In order to measure of performances, our selective mutation

was tested on typical four function optimization problems that

have been largely used at previous papers [12, 15, 16]. The

four functions are given in Equation 1.G 4�H E;:;:I:KJLE1#&M BONQPRB 'G B H :TSVUKJ +�WYX[Z]\ ^`_ 2ba _(cd+	WYXRZe\ ^`_ 2ba _3c .gf`h iZ 4Ah f!2bfjh f!fA4 ZY^ _ 2ba _ c)ckZ 4Dh fD2�f`h f3f�4 Zl^ _ 2ba _ c&cGnm H #)M BoNpPRB ' fjh B!i <jqk8�#rUs:1#&M BtNQPRB ' f`h 4uN =?' BGwv H =`:;:g#)M B J P ' BtN #�=KJxM�' B
(1)

Functions
G 4zy G v

are a simple function, a Mexican hat

function, a Shafer function 2, and DeJong function 2, re-

spectively. Figure 1 shows the input-output relations of four

functions. Function
G 4 is relative simple in that it has only

one global optimum at the #&:T{!:I' point. Unlike the functionG 4 , function
G B , Mexican hat function, has many local optima

around the global optimum at the #&:1{3:I' point. The local optima

act as an obstacle for genetic algorithms to approach the

global optimum. On the other hands, function
G;m

has multiple

optima at four peaks near (#(JC=`:1{jJC=`:|' , #�JC=`:1{j=?:I' , #(=`:1{jJC=`:|' ,#�=?:T{`=`:I') and its value is about =j}gS E . DeJong function 2

(
Gwv

) has only one global optimum at #(JK9RS :s}|~T{jJK9TS :;}I~|' point.

Although it is viewed as simple, but it is not easy because

there are a lot of local optimum in the direction of
P

axis near

the global optimum and opposite side.

We experimented our method using the typical parameters

as shown in Table I. Since four functions have M and
P

axes,

TABLE I
PARAMETERS FOR EXPERIMENTS

Parameters Values

Selection method roulette wheel selection
Crossover probability (�s�) 0.6
Mutation probability (�;�) 0.05
Population size 10,100
Individual length 16, 22 bits
Number of grades 2
Number of runs 100

TABLE II
EXPERIMENTAL RESULTS

Ind. len. 16 bits

pop. size = �(� ORG SM

function avg. dev. avg. dev.� � 2073.95 2373.47 808.02 896.85�!�
1931.08 2132.20 1423.86 1453.60�3�
262.14 236.97 142.74 139.41�3�
1706.78 2406.69 623.34 850.50

Ind. len. 22 bits

pop. size = �(� ORG SM

function avg. dev. avg. dev.� � 96835.90 113165.78 50375.16 60475.82� �
83134.31 88359.47 65109.63 68910.11�3�
4564.23 4472.40 2548.27 2736.64�3�
10318.83 9848.34 5136.48 5568.53

Ind. len. 16 bits

pop. size = �(�A� ORG SM

function avg. dev. avg. dev.� � 173.51 168.17 57.74 50.37�!�
200.49 197.36 131.68 142.39�3�
20.30 19.93 15.73 13.76� �
8418.19 16506.74 341.04 756.38

Ind. len. 22 bits

pop. size = �(�A� ORG SM

function avg. dev. avg. dev.� � 9277.01 8785.41 3581.25 2990.29�!�
9070.89 11252.53 6508.52 5401.40�3�
232.09 199.69 177.04 199.83�3�
62486.01 133464.30 6869.73 13486.20

16 bits of individual length mean that each axis has 8 bits

resolutions. The number of grades is set to 9 , therefore, if the

rank of an individual is higher than the half of individuals, a bit

in the half of least significant strings is randomly selected and

mutated and vice versa. In order to show the statistical results,

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:8, 2009

2056

Simple

fitness

-10
-5

 0
 5

 10
x -10

-5

 0

 5

 10

y

 2400
 2500
 2600
 2700
 2800
 2900
 3000

Mexican Hat

fitness

-10
-5

 0
 5

 10
x -10

-5

 0

 5

 10

y

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

(a) (b)

Shafer II

fitness

-10
-5

 0
 5

 10
x -10

-5

 0

 5

 10

y

 0
 2
 4
 6
 8

 10
 12
 14
 16

DeJong II

fitness

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
x -2.5

-2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2
 2.5

y

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000

(c) (d)

Fig. 1. Experimental functions (a)
� � (b)

�D�
(c)

�!�
(d)

�!�
)

we executed the 100 runs for each experiment because the

performance of genetic algorithms depends on the initial seed

number of random functions. The total results are summarized

at Table II. We recorded the generation number when at least

an individual in the pool found the global optimum. In Table

II, ORG and SM mean the methods of using only normal

mutation and using normal and additional selective mutation,

respectively; and the avg. and dev. are the average and standard

deviation of 100 runs, respectively. As shown in the table,

our selective mutation increases the performances of genetic

algorithms for all functions, especially for the function of
G;v

.

The ratio of enhanced performances is very similar to both

cases of 16 bits and 22 bits. For examples, the function
G 4

finished about twice faster at both cases.

In the case that population size is 100, genetic algorithms

find the global optimum more faster than the case that popu-

lation size is 10 except for the case of function
Gsv

. It is very

natural because if large individuals concurrently find the global

optimum, then the probability to approach global optimum will

increase. We wonder why genetic algorithms slowly find the

global optimum even if the number of individual increases

in the case of function
G v

. Our observation is that since the

local optimum area near #r9RS :s}I~1{jJK9TS :;}I~I' is quite broad in the

case of function
Gnv

, genetic algorithms easily fall in the area

and can not easily get out of the area. This results in making

the genetic algorithms stay long at the local optimum area.

In the case of large individuals, some dominant individuals

at the local optimum area are dominantly selected as parents

and dominantly generate offsprings near them. If genetic

algorithms fall in the local optimum area, it is hard to get out

of the area. The more the number of individuals, the better

the genetic algorithms are hard to get out of the area. This

is because in the case of small number of individuals, some

individuals that are quite changed from their parents can be

located near global optimum area and can be dominant for

getting out of the local optimum area. On the other hand, even

if some individuals are quite changed to the global optimum

area, it is hard for the individuals to dominate in the case of

the large number of individuals. Since the probability that the

roulette wheel selection selects the quite changed individuals

located at the global optimum area becomes low when the

number of individuals are large. As opposite case, if some

individuals located in global optimum area are dominant, then

the genetic algorithms can find the global optimum fast. Thus,

the standard deviation of the results in the case of function
G;v

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:8, 2009

2057

is considerably large.

As shown in the Table II, this problem is very diminished in

our method. In =?> bits, the result of ORG in the 100 individuals

is worse about five times than that in the 10 individuals, but

the result of SM is better about two times. In 9;9 bits, the ORG

shows bad results of six times in 100 individuals, but the SM

shows really similar results to those of the 10 individuals.

From this we can conclude that our method helps the genetic

algorithms get out of local optimum and results in increasing

the performances.

IV. CONCLUSION

In this paper, we introduced a new additional mutation

termed selective mutation for enhancing the performances

of genetic algorithms. The selective mutation additionally

changes a bit in the specific part of strings of individuals

according to their ranks. If the ranks of individuals are high,

then a bit in the least significant part is changed, and vice

versa. This helps genetic algorithms fast approach to global

optimum and escape local optima in the case that individuals

fall in premature convergence. This two effects make genetic

algorithms find global optimum more quickly and result in

increasing the performances of genetic algorithms. Our selec-

tive mutation will be easily incorporated into the other types

of genetic algorithms in order to increase their performances.

REFERENCES

[1] D. Goldberg, Genetic Algorithms in Search, Optimization and Machine

Learning. Reading, MA: Addison–Wesley, 1989.

[2] M. Srinivas and L. M. Patnaik, “Genetic Algorithms: A Survey,” IEEE

Computer Magazine, pp. 17–26, June 1994.

[3] J. L. R. Filho and P. C. Treleaven, “Genetic-Algorithm Programming
Environments,” IEEE Computer Magazine, pp. 28–43, June 1994.

[4] D. Beasley, D. R. Bull, and R. R. Martin, “An Overview of Genetic
Algorithms: Part 1, Fundamentals,” Technical Report obtained from
http://home.ifi.uio.no/ � jimtoer/GA Overview1.pdf.

[5] D. B. Fogel, “An Introduction to Simulated Evolutionary Optimization,”
IEEE Transactions on Neural Networks, vol. 5, pp. 3–14, Jan. 1994.

[6] H. Szczerbicka and M. Becker, “Genetic Algorithms: A Tool for Mod-
elling, Simulation, and Optimization of Complex Systems,” Cybernetics

and Systems: An International Journal, vol. 29, pp. 639–659, Aug. 1998.

[7] R. Yang and I. Douglas, “Simple Genetic Algorithm with Local Tuning:
Efficient Global Optimizing Technique,” Journal of Optimization Theory

and Applications, vol. 98, pp. 449–465, Aug. 1998.

[8] C. Xudong, Q. Jingen, N. Guangzheng, Y. Shiyou, and Z. Mingliu, “An
Improved Genetic Algorithm for Global Optimization of Electromag-
netic Problems,” IEEE Transactions on Magnetics, vol. 37, pp. 3579–
3583, Sept. 2001.

[9] J. A. Vasconcelos, J. A. Ramirez, R. H. C. Takahashi, and R. R.
Saldanha, “Improvements in Genetic Algorithms,” IEEE Transactions

on Magnetics, vol. 37, pp. 3414–3417, Sept. 2001.

[10] E. Alba and B. Dorronsoro, “The exploration/exploitation tradeoff in dy-
namic cellular genetic algorithms,” IEEE Transactions on Evolutionary

Computation, vol. 9, pp. 126–142, Apr. 2005.

[11] V. K. Koumousis and C. Katsaras, “A saw-tooth genetic algorithm
combining the effects of variable population size and reinitialization
to enhance performance,” IEEE Transactions on Evolutionary Compu-

tation, vol. 10, pp. 19–28, Feb. 2006.

[12] J. Andre, P. Siarry, and T. Dognon, “An improvement of the standard
genetic algorithm fighting premature convergence in continuous opti-
mization,” Advances in engineering software, vol. 32, no. 1, pp. 49–60,
2001.

[13] J. E. Smith and T. C. Fogarty, “Operator and parameter adaptation in
genetic algorithms,” Soft computing : a fusion of foundations, method-

ologies and applications, vol. 92, no. 2, pp. 81–87, 1997.

[14] C. W. Ho, K. H. Lee, and K. S. Leung, “A Genetic Algorithm Based on
Mutation and Crossover with Adaptive Probabilities,” in Proceedings of

the 1999 Congress on Evolutionary Computation, vol. 1, pp. 768–775,
1999.

[15] S. H. Jung, “Queen-bee evolution for genetic algorithms,” Electronics

Letters, vol. 39, pp. 575–576, Mar. 2003.
[16] K. DeJong, An Analysis of the Behavior of a Class of Genetic Adaptive

Systems. PhD thesis, University of Michigan, 1975.

Sung Hoon Jung He is a professor in the Department of Information and
Communication Engineering, Hansung University. He received his B.S degree
from Hanyang University, Korea, in 1988 and M.S. and Ph.D. degrees from
KAIST, in 1991 and 1995, respectively. His research interests are in the field
of intelligent systems and he recently starts working on systems biology. Dr.
Jung is a member of KIIS and IEEK.

