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Abstract—In this paper we study different similarity based 

approaches for the development of QSAR model devoted to the 
prediction of activity of antiobesity drugs. Classical similarity 
approaches are compared regarding to dissimilarity models based on 
the consideration of the calculation of Euclidean distances between 
the nonisomorphic fragments extracted in the matching process.  

Combining the classical similarity and dissimilarity approaches 
into a new similarity measure, the Approximate Similarity was also 
studied, and better results were obtained. The application of the 
proposed method to the development of quantitative structure-
activity relationships (QSAR) has provided reliable tools for 
predicting of inhibitory activity of drugs. Acceptable results were 
obtained for the models presented here. 
 

Keywords—Graph similarity, Nonisomorphic dissimilarity, 
Approximate similarity, Drugs activity prediction.  

I. INTRODUCTION 
RAPH theory has been widely applied in Computational 
Chemistry. Chemists use 2D graph representations of 

chemical structures (called molecular graphs) in order to 
extract graph properties which are later related with chemical, 
physical and activity properties of the molecules represented 
using those graphs. Thus, several graph applications in the 
analysis and solutions of chemical problems have been carried 
out, namely: Quantitative Structure Activity/Property 
Relationships (QSAR/QSPR), query methods against large 
databases of chemical compounds, etc. [1],[2]. 

QSAR methodology seeks mathematical equations that 
correlate structural descriptors with activities of drugs as well 
as other pharmacological properties. This methodology shows 

 
Manuscript received April 20, 2007. This work was supported by the 

Comisión Interministerial de Ciencia y Tecnología (CiCyT) and FEDER 
(Project: TIN2006-02071). 

I. Luque Ruiz is with Department of Computing and Numerical Analysis. 
University of Córdoba, Campus de Rabanales. Albert Einstein Building, 
E14071 Córdoba. Spain (e-mail: ma1lurui@uco.es). 

M. Urbano Cuadrado is with Institute of Chemical Research of Catalonia 
ICIQ, Avinguda Països Catalans, 16. E-43007 Tarragona. Spain (e-mail: 
murbano@iciq.es) 

M. A. Gómez-Nieto is with Department of Computing and Numerical 
Analysis, University of Córdoba, Campus de Rabanales, Albert Einstein 
Building, E14071 Córdoba, Spain (e-mail: mangel@uco.es). 

a series of advantages, namely: non requirement of a deep 
theoretical knowledge of the receptor-drug system and the 
predictive ability achieved for a wide drug spectrum [3]. 

QSAR developments usually involve three stages: 1) first, 
descriptors, considered as chemical information vectors, are 
obtained from the data set (molecules) [4]; 2) use of 
mathematical regression techniques which establish formulas 
—usually multivariate expressions— that relate descriptors 
with activities or properties; 3) consideration of validation 
strategies in order to assess the predictive ability of QSAR 
equations according to analytical characteristics like accuracy, 
speed, robustness and reversibility [5]. 

One of the most widely used QSAR models are based on 
obtaining the space representation through the similarity 
calculation among the data set elements. 

The basic idea underlying on similarity-based QSAR 
approaches was enunciated explicitly by Johnson and 
Maggiora [6], who state that “molecules that are structurally 
similar likely will have similar properties”. Thus, when the 
activity of a given molecule is unknown, we can predict it by 
taking into account similarity values between the molecule 
under study and the molecules of a data set whose activities 
are known.  

Studies of similarity between chemical structures can be 
also overtaken using graphs. There are two stages involved in 
classical similarity calculations: 1) isomorphic subgraphs 
detection and extraction; and 2) similarity computation taking 
into account the number of isomorphic nodes and edges, that 
is, those nodes and edges common to the two matched graphs 
[7]. 

However, nonisomorphic fragments, which are not 
computed for the calculation of classical similarity 
measurements, also determine the properties and activities of 
chemical substances. Thus, QSAR models based on similarity 
approaches show high degeneracy because of information 
about nonisomorphic fragments is taken into account. 

Therefore, in order to improve the accuracy and precision 
of chemical predictions, we propose the measurement of the 
similarity/dissimilarity between the nonisomorphic fragments 
extracted in the matching process, for the correction of 
classical similarity models. 
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This dissimilarity value can be obtained through the 
calculation of molecular descriptors over the graphs (no 
necessarily connected) representing the nonisomorphic 
fragments, and a distances metric like Euclidean, 
Mahalanobis, and so on. The use of molecular descriptors 
allows the consideration of both size of nonisomorphic 
fragments and the type and nature of the nodes and edges 
(atoms and bonds). 

Thus, a new and finer similarity measurement can be 
obtained, which overcomes disadvantages related to the non 
consideration of nonisomorphic subgraphs in the similarity 
calculation [8].  The corrected similarity measurement is 
called “Approximate Similarity” (AS), which merges 

isomorphic and nonisomorphic information into a more real 
similarity value since the difference between the subgraphs 
which do not form the isomorphism is employed for 
correcting classical similarity values. 

This work has been organized as follows: after the 
introductory section, we describe the sample selected to apply 
the QSAR approach presented in this paper and the 
experimental procedure followed. Section 3 shows the 
experimental results obtained for the classical similarity, the 
use of nonisomorphic fragments and the combining of both in 
the AS similarity measurements. Finally, conclusions are 
given in section 4.  

 

TABLE I 
SAMPLE OF 30 CHEMICAL COMPOUNDS AND THEIR  ANTIOBESITY ACTIVITY VALUES USED IN THE TEST 

  
 R1 R2 R3 R4 pIC50  R1 R2 R3 R4 pIC50 

1 H H H 
 

1.30 16 H Cl H 
 

1.84 

2 H CH3 H 
 

2.02 17 H H CH3 
 

1.60 

3 H Cl H 
 

1.78 18 H Cl H 
 

1.05 

4 H H H 
 

2.48 19 H H H 
 

1.24 

5 H Cl H 
 

2.05 20 H Cl H 
 

1.32 

6 H H H 
 

0.98 21 H CH3 H 
 

1.41 

7 Cl H H 
 

1.74 22 H F H 
 

0.89 

8 H Cl H 
 

2.00 23 H Cl H 
 

2.17 

9 H H CH3 
 

1.70 24 H H H 
 

2.12 

10 H H OCH3 
 

2.88 25 H Cl H 
 

2.30 

11 H H OCH3 
 

1.75 26 H H H 
 

0.88 

12 H H H 
 

1.37 27 H H H 
 

2.14 

13 H H CH3 
 

1.70 28 H Cl H 
 

0.90 

14 H Cl H 
 

1.40 29 H H H 
 

0.94 

15 H CH3 H 
 

1.94 30 H H CH3 
 

1.48 
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II. QSAR MODEL FOR THE PREDICTION OF ANTIOBESITY 

ACTIVITY OF DRUGS 

A. Sample of Antiobesity Drugs 
In this paper we try to analyse the capacity of different 

similarity approaches in the development of QSAR models for 
the prediction activity of NPY Y5 antagonist given their 
potential antiobese agents [9].  

It is widely accepted that obesity influences on many kinds 
of diseases and disorders, namely: respiratory, 
musculoskeletal, gastrointestinal, cardiovascular, etc. So, the 
development of effective and safe antiobesity drugs has a high 
interest to pharmacological chemists. 

The data set selected were 30 benzoxazinone derivates 
selected as the chemical space to be modelled. These 
compounds have shown good antiobese activity in recent 
studies [9]. Table I shows the data set structures and their 
pIC50=-log(1/IC50) values.  

The statistical information of the data set is as follows:  
N: 30, mean: 1.64, min: 0.88, max: 2.88, standard 

deviation: 0.51. 

B. Data Modeling and Calculation 
Graph structures were built using MarvinSketch software 

[10]. Structural isomorphism for the calculation of classical 
similarity measurements was obtained using fingerprint and 
graph matching approaches. 

Fingerprints were generated by generfp (default options) of 
Jchem [10]. A fingerprint is a binary array of a preset size 
which represents structural properties of the molecular graphs. 
Different kinds of fingerprints have been proposed depending 
on the structural elements to be represented and on the array 
size. In a general way, fingerprint construction consists of a 
series of steps, namely: a) generation of the molecular graph 
for each element of the data set; b) obtaining of the subgraphs 
showing size from 1 to m (often lower than 9) for each graph; 
c) extraction of preset pattern substructures in some 
fingerprint kinds; d) assignation of a binary representation and 
position of each path and pattern presented in the data set; e) 
and finally, the fingerprint construction. 

So, fingerprints can be considered as data structures which 
do not require great computational costs for their handling and 
store greater structural information than that shown by the 
chemical graph. Fingerprint similarity values are calculated 
through the computation of Boolean operations among the bits 
of the fingerprints.  

Furthermore, structural isomorphism using graph matching 
was calculated for all the pairs of data set molecules by using 
an algorithm developed by the authors [11].  

MCS (maximum common substructure) was the isomorphic 
fragment considered. Isomorphic and nonisomorphic 
fragments were retained for descriptor and similarity 
calculation.  

For the calculation of dissimilarity measurements between 
nonisomorphic fragments Hyper-Wiener descriptor was 

considered. As expression 1 shows, Hyper-Wiener index 
(WW) is derived from Wiener index (see expression 2) but 
also considers a quadratic term of the distance contribution of 
the graph nodes. 
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Hyper-Wiener (also Wiener) index is calculated thought the 
graph distance matrix. In this matrix the distance between two 
nodes connected is equal to 1, therefore the characteristics 
between different types of nodes is not taken into account. 

In order to consider the nature of the nodes and edges of the 
molecular graphs we have used weighted distance matrix for 
the calculation of Hyper-Wiener index.  

In weighted distance matrices distance equal to 1 between 
nodes i and j are replaced by bond length between the atoms i 
and j relative to the distance to the bond C-C. Software 
developed by the authors was used for this calculation. 

In addition, dissimilarity matrices (Euclidean-based 
distances) were employed for the measurement of 
nonisomorphic fragments. Then these matrices were used for 
QSAR model construction. 

C. Multivariate Regression Analysis 
If an N by N similarity matrix is built using N compounds, 

this matrix can be employed to develop multivariate QSAR 
approaches. Each matrix element (i,j) provides the similarity 
between the compounds i and j and it shows the same value as 
the element (j,i). The diagonal of the matrix is equal to 1.  

From the point of view of multivariate regression, the 
matrix is considered a set of N objects (rows) characterized by 
N variables (columns). Thus, an object is a given compound 
described by a serie of global variables which accounts for the 
similarity between the compound and a reference compound. 
PLS was employed as the multivariate regression technique 
[12]. 

III. EXPERIMENTAL RESULTS 

A. Classical Similarity Analysis 
First, constitutional and fingerprint-based similarity 

matrices were built in order to analyze the results obtained by 
means of considering only isomorphic information.  

Table II shows the statistical results and the number of 
property-descriptor outliers obtained in LOO processes.  

The outlier study was carried out by setting a cut-off value 
for the T parameter, which is computed as the ratio between 
the deviation of the predicted activity obtained for an object 
(molecule) and the error obtained in prediction (in our case, 
SECV). This is a way to detect those samples that show an 
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anomalous behaviour with regard to the rest of the data set.  
A Tcut-off set to 2.5 is often used in multivariate models. As 

can be observed in Table II, in spite of obtaining good 
correlations once outliers had been removed, the number of 
outliers was excessive (it can not be greater than 10 % of the 
data set size).  

 
TABLE II 

STATISTICAL RESULTS FOR CONSTITUTIONAL AND FINGERPRINTS BASED 
SIMILARITY APPROACH 

 Q2 Slope Bias SECV Outlier 
Constitutional 0.73 0.87 0.20 0.22 6 
Fingerprints 0.75 0.79 0.33 0.28 5 

 
Fig. 1 shows the two first principal components plots 

obtained with PCA analysis for Constitutional similarity 
approach. The six outliers detected with this approach can be 
observed clearly.  

Molecules 10 and 11 are sited alone in the lower quadrant. 
Molecule 10 has the maximum activity value of de data set, 
being difficult to modelled, and molecule 11 contains a 
fragment which does not exist in another data set molecule. 
Similar interpretation can be given for molecule 4. 

On the other hand, molecules 22 and 23 are very similar but 
they show a very different activity value. The difference 
between the chemical properties of –F and –Cl substituents is 
not enough to interpret the high activity difference between 
both molecules. A close interpretation can be given for the 
outlier corresponding to molecule 27 when its structure and 
activity value are compared with molecule 12. Both molecules 
are very similar, however a high activity difference exist. 
 

 
Fig. 1 PC1 vs. PC2 for Constitutional similarity approach 

 
In Fig. 2 PC1 vs. PC2 is plotted for the fingerprints-based 

approach. As we observed, the outliers 4, 7, 11, 22, 23 are 
also detected and not modelled. 

This behaviour of classical similarity methods could be due 
to not considering directly the nonisomorphic data in 
modelling, thus leading to strong problems related to the cliff 
phenomenon. 

 
Fig. 2 PC1 vs. PC2 for Constitutional similarity approach 

 

B. Nonisomorphic Fragments Behavior 
Several works have been proposed by taking into account 

differences between nonisomorphic fragments extracted from 
matching processes with the aim of modelling different data 
sets [2],[3].  

Dissimilarity measures can be obtained by means of using 
an appropriate descriptor over molecular graphs (not 
necessarily full connected) that correspond to nonisomorphic 
fragments. 

If the matching algorithm proposed by authors [42] is 
applied to the molecules of a given data set, an isomorphic 
fragment (IA,B) and two non necessarily connected 
nonisomorphic substructures (NIFA and NIFB) are obtained for 
each pair of molecules A and B. Dissimilarity or distance 
value can be obtained as follows: 

  

)()(
)]()([ 5.022

, BTDATD
NIFTDNIFTD BA

BA ×
+

=Γ  (3)

  
where: TD(A) and TD(B) represent the descriptors computed 
over the molecules A and B, respectively, and TD(NIFA) and 
TD(NIFB) show the invariant value for nonisomorphic 
structures of A and B. Thus, ΓA,B is a dissimilarity value which 
accounts for the nonisomorphic fragments of the matched 
molecules.  

When expression 3 was used with Hyper-Wiener index and 
weighted distance matrix, the statistical results were as 
follows: Q2 = 0.77, Slope = 1.02, Bias = 0.33, SECV = 0.24, 
Outliers = 3. 

Therefore, dissimilarity approach based on nonisomorphic 
fragments shows a better correlation coefficient than classical 
similarity model, also reducing the number of outliers and 
standard error. 
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We also tested expression 3 with both non-weighted 
distance matrices and Wiener index and not noteworthy 
differences were observed. Fig. 3 shows PC1 vs. PC2 for 
dissimilarity approach of expression 3.  

As observed in Fig. 3, molecule 22 is detected again as 
outlier, although the other outliers detected by classical 
similarity approach are modelled. However, although the 
number of outlier is reduced to only 3, molecules 1 and 6 can 
not be modelled. 
 

 
Fig. 3 PC1 vs. PC2 for dissimilarity approach based on 

nonisomorphic fragments 
 

From the above commented results, we can conclude 
because of the data set characteristics: a) weighted and non-
weighted distance matrices show similar behavior because few 
heteroatom are present in the non isomorphic fragments, b) 
Wiener index shown worst results than Hyper-Wiener because 
no very large nonisomorphic fragments are detected and, 
therefore the consideration of squared terms (see expression 1) 
by means of the Hyper-Wiener index involves a refinement of 
the nonisomorphic structure-based influence on the distance 
measure, and c) the characteristics of nonisomorphic 
fragments is a good approximation to the development of a 
prediction model, even more accuracy than the models based 
on isomorphic fragments.  

C. Combining QSAR Approaches 
For the different approaches above described a set of 

outliers were detected. We can classify outliers into two types, 
namely: a) those which do not belong to the chemical space to 
be modelled (structural or activity space), thus requiring new 
objects to cover the non well defined chemical regions; and b) 
outliers characterized by the cliff phenomenon [15], which 
derives from great activity variations resulting from small 
structural changes. So, solutions to the cliff outliers are 
difficult to be solved. 

The fact of detecting molecules 22 and 23 as outliers is 
owing to the cliff problem since these two molecules are 

extremely similar and show quite different activities, as can be 
observed in Table I and Fig. 1. On the other hand, other 
outliers show problems related to the incorrect definition of 
the activity space to predict. We can observe that there are 
some activity value intervals only defined by one object (one 
compound), thus leading to poor predictions for these 
molecules. 

As stated in the Introduction section, several solutions have 
been proposed in order to build appropriate predictive spaces 
by similarity-based QSAR methods. They employed those 
descriptors showing high correlations with the activity under 
study and different similarity measures weighted by optimal 
consensus factors.  

In previous works [8], [13], [14] we have shown the 
usefulness of the Approximate Similarity (AS) concept to 
develop QSAR models. Approximate similarity is based on 
correcting classical similarities by means of distance or 
dissimilarity values corresponding to the nonisomorphic 
fragments extracted from matching processes.  

Dissimilarity values are generated by the calculation of a 
topological descriptor over molecular graphs that represent the 
nonisomorphic substructures, as we described in expression 3. 

Thus, the Approximate Similarity (AS) is defined as 
follows: 

  
),w,Γf(SAS ΓA,BA,BA,B =  (4)

  
where: SA,B is a classical similarity measurement 
(constitutional or fingerprint-based); ГA,B is the distance or 
dissimilarity measurement obtained through the 
nonisomorphic fragments as stated by expression 3, and wΓ is 
a weighting factor which adjusts the contribution of the 
nonisomorphic fragments on the similarity measurement. 

Choice of an appropriate function f and optimization of the 
distance contribution to the similarity correction must be 
carried out for each data set depending on the predictive 
ability. For benzoxazinone derivatives, AS expression was as 
follows: 
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where: TD(MCS) is the value of the Hyper-Wiener index 
corresponding to the isomorphic fragment (maximum 
common subgraph) extracted from the matching of A and B 
molecules, and the remaining terms have been defined 
previously. Thus, the correcting term considered descriptions 
of nonisomorphic subgraphs and differences between A and B 
graphs with regard to the MCS value. 

Fig. 4 shows PC1 vs. PC2 plot corresponding with the 
model built using approximate similarity. Three outliers are 
detected. As observed, molecule 22 is detected again as an 
outlier. The extremely low activity value of this molecule 
regarding to similar molecules of the data set makes very 
difficult model it.  
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On the other hand, the group composed by molecules 1, 2 
and 3 (rounded in Fig. 4) is also difficult to model. Molecule 2 
is detected as an outlier, while using dissimilarity approach 
molecule 1 is detected. These three molecules show a very 
close structure but very different activity value. 
 

 
Fig. 4 PC1 vs. PC2 for AS approach 

 

Fig. 5 shows the representation of the differences between 
experimental and predicted pIC50 values obtained with 
expression (5) for the data set without the outliers’ 
consideration. Statistical characterization of the prediction 
capacity was as follows: Q2 = 0.88, slope = 1.06 and bias = 
0.09, SECV = 0.18 

Therefore, accuracy and precision of the predictions carried 
out were significantly improved, thus leading to useful 
uncertainty reductions for the computer-aided drug 
development.  

IV. CONCLUSION AND REMARKS 
In this work we have studied several graph-based methods 

to develop QSAR models with the aim of predicting the 
inhibitory capacity presented by 30 benzoxazinone derivatives 
for the NPY Y5 receptor.  Isomorphic and nonisomorphic 
information were first employed and better correlations were 
obtained by means of using dissimilarity data accounting for 
the differences between molecules. But several compounds 
shown an anomalous behaviour owing to the cliff phenomenon 
or to problems related to the chemical space definition.  

The lowest number of outliers was obtained for 
nonisomorphic matrices: 3 compounds shown anomalous 
deviations, this quantity is lower than the number of outliers 
accepted by chemometric community as cut-off for the 
development of predictive models (15 % of the data set size). 

Combining of dissimilarity measurements calculated over 
nonisomorphic fragments and classical similarity 
measurements gave an excellent result.  

Thus, we can conclude that the QSAR development 
requires most of the times the use of different kinds of 
information in order to build reliable tools. The merging 
function and the contributions of the two kinds of data 

employed must be optimized for each chemical family to be 
modelled. 

It is interesting to remark the fact of employing fast and 
cheap tools to develop the QSAR models here presented since 
only 2D computations are involved and geometry optimization 
and alignment are not required.  

 

 
Fig. 5 Differences between Predicted and Experimental pIC50 values 

obtained for the prediction model of eq. (5) 
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