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Vibration of Functionally Graded Cylindrical
Shells under Effects Clamped-Clamped
Boundary Conditions
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Abstract—Study of the vibration cylindrical shells made of
a functionally gradient material (FGM) composed of stainless
steel and nickel is important. Material properties are graded in
the thickness direction of the shell according to volume
fraction power law distribution. The objective is to study the
natural frequencies, the influence of constituent volume
fractions and the effects of boundary conditions on the natural
frequencies of the FG cylindrical shell. The study is carried
out using third order shear deformation shell theory. The
governing equations of motion of FG cylindrical shells are
derived based on shear deformation theory. Results are
presented on the frequency characteristics, influence of
constituent volume fractions and the effects of clamped-
clamped boundary conditions.

Keywords—Vibration, FGM, Cylindrical shell, Hamilton's
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I. INTRODUCTION

YLINDRICAL shells have found many applications in the

industry. They are often used as load bearing structures for
aircrafts, ships and buildings. Understanding of vibration
behavior of cylindrical shells is an important aspect for the
successful applications of cylindrical shells. Researches on
free vibrations of cylindrical shells have been carried out
extensively [1-5]. Recently, the present authors presented
studies on the influence of boundary conditions on the
frequencies of a multi-layered cylindrical shell [6]. In all the
above works, different thin shell theories based on Love-
hypothesis were used. Vibration of cylindrical shells with ring
support is considered by Loy and Lam [7]. The concept of
functionally graded materials (FGMs) was first introduced in
1984 by a group of materials scientists in Japan [8-9] as a
means of preparing thermal barrier materials. Since then,
FGMs have attracted much interest as heat-shielding

materials. FGMs are made by combining different materials
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using power metallurgy methods [10]. They possess variations
in constituent volume fractions that lead to continuous change
in the composition, microstructure, porosity, etc., resulting in
gradients in the mechanical and thermal properties [11-12].
Vibration study of FGM shell structures is important.
However, study of the vibration of FGM shells with ring
supports is limited. The FGMs considered are composed of
stainless steel and nickel where the volume fractions follow a
power-law distribution. The study is carried out based on third
order shear deformation shell theory. Studies are carried out
for cylindrical shells with clamped-clamped (C-C) boundary
conditions. Results presented include the frequency
characteristics of cylindrical shells, and the influence of
boundary conditions. The present analysis is validated by
comparing results with others in the literature.

Il. FUNCTIONALLY GRADED MATERIALS

For the cylindrical shell made of FGM the material properties
such as the modulus of elasticity E , Poisson ratiov and the
mass density p are assumed to be functions of the volume
fraction of the constituent materials when the coordinate axis
across the shell thickness is denoted by Z and measured from
the shell’s middle plane. The functional relationships
between E ,v and o with Z for a stainless steel and nickel

FGM shell are assumed as [13].
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The strain-displacement relationships for a thin shell [14].
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where A and A, are the fundamental form parameters or Lame
parameters,U,, U, and Uj are the displacement at any point
(q,09,03),Ry and R, are the radius of curvature related to
oy, ay and oy respectively. The third- order theory of Reddy

used in the present study is based on the following
displacement field:
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These equations can be reduced by satisfying the stress-free
conditions on the top and bottom faces of the laminates, which

are equivalentto e 3=e,;=0at 7 = J_rh Thus,
2
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Where C, = o
displacement relation (4) - (9), it can be obtained for the third-
order theory of Reddy

. Substituting Eq. (12) into nonlinear strain-
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Where (%, »°) are the membranes strains and (k,k’,y*,»*) are
the bending strains, known as the curvatures.

I1l. FORMULATION

Consider a cylindrical shell as shown in Fig. 2, where R is the
radius, L the length and h the thickness of the shell. The
reference surface is chosen to be the middle surface of the
cylindrical shell where an orthogonal coordinate system
X, 8,z is fixed. The displacements of the shell with reference
this coordinate system are denoted byU;,U, and U; in

the X,8 and Z directions, respectively.
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Fig. 1 Geometry of FGM cylindrical shell

For a thin cylindrical shell, the stress -strain relationship are
defined as

On Q. Q, 0 0 0 €n
O Q. Qp 0 0 0 €2 (21)
o,r=|0 0 Q, O 0 €y
O3 0 0 0 Qs O €13
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For a isotropic cylindrical shell the reduced stiffness Qij(i ,
j=1, 2 and 6) are defined as

Qi1 =Q = .2 Q2 = 1,2 (22)
E
Qa4 =Qs5 = Qg5 = 20+7) (23)

where E is the Young's modulus and v is Poisson's ratio.
Defining

WEDERGH QLaddddds @9
where Qij are functions of z for functionally gradient
materials. Here A; denote the extensional stiffness, Dy; the
bending stiffness, B--
stiffness and E,J,F,J,G H

coupling, and higher-order stlffness. For a thin cylindrical
shell the force and moment results are defined as

the bending-extensional coupling

are the extensional, bending,
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IV. THE EQUATIONS OF MOTION FOR VIBRATION OF A
GENERIC SHELL

The equations of motion for vibration of a generic shell can be
derived by using Hamilton's principle which is described by

s[Pm-Kyt=0 , TM=U-V (28)
Where K,IT,U and Vv are the total Kkinetic, potential, strain

and loading energies, t; and t,are arbitrary time. The kinetic,

strain and loading energies of a cylindrical shell can be written
as:
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The in?i;zitesimal volume is given by
dVv=AAdada,da, (32)

with the use of Egs. (11)-(20) and substituting into Eq. (28),
we get the equations of motions a generic shell.
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For Egs. (33) — (37) are defining as
h )
I, = lenpa da, (38)
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V. EQUATIONS OF MOTION FOR VIBRATION OF CYLINDRICAL
SHELL

The curvilinear coordinates and fundamental from parameters
for a cylindrical shell are:

R, = a,% =0A, =aA =00, =0, =60, =X (39)

Substituting relationship (39) into Egs. (33)-(37) the equations
of motions for vibration of cylindrical shell with the third-
order theory of Reddy are converted to
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The displacement fields for a FG cylindrical shell and the
displacement fields which satisfy these boundary conditions
can be written as

u, =

cos(n@) cos(wt)

+ 94 ()
OX
u, = B ¢ (x) sin(n@) cos(wt)

=C ¢ (x)cos(nd) cos(wt)
4, =D 0N 6¢( )
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(45)

cos(nd) cos(wt)

where, K,B_,C_ , D and E are the constants denoting the
amplitudes of the vibrations in the x,0 and z
directions, ¢, and ¢, are the displacement fields for higher
order deformation theories for a cylindrical shell, ¢(x) is the

axial function that satisfies the geometric boundary
conditions. The axial function ¢(x)is chosen as the beam

function as

¢(x):;/lcos?-dt—x)wzcos/(%()—(m(%sin@()wzlsin(}%x)) (46)

The geometric boundary conditions for free boundary
conditions can be expressed mathematically in terms of

#(x)as:

clamped boundary condition
$(x)=¢'(x)=0 (4

Substituting Eq. (45) into Eqgs. (40) - (44) for third order

theory we can be expressed
det (C; -M; 0?)=0 (48)

Expanding this determinant, a polynomial in even powers
of @ is obtained

B.0" + Bo® + Breo® + Bro* + Bye® + B = (49)

where g, (i=0,1,2,3,4,5) are some constants. Eq. (49) is solved
five positive and five negative roots are obtained. The five
positive roots obtained are the natural angular frequencies of
the cylindrical shell based third-order theory. The smallest of
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the five roots is the natural angular frequency studied in the
present study.

VI. RESULTS AND DISCUSSION

To validate the present analysis, results for cylindrical
shells are compared with Loy and Lam [15] and with
M.R.Isvandzibaei [16]. The comparisons show that the present
results agreed well with those in the literature.

TABLE |
COMPARISON OF NATURAL FREQUENCY (HZ) FOR A SIMPLY SUPPORTED
ISOTROPIC CYLINDRICAL SHELL.

L=203cm, R=508cm, h=0.25cm , E=2.0778810"'Nm ,»=0.31775¢
p=8166kgm™

n m Loy[15] M.R.Isvandzibaei [16] Present
2 1 20438 2043.6 2045.1
2 56354 5635.2 5624.6
3 89325 8932.1 8821.5
4 114075 11407.2 11437
5 132532 13252.8 13197.5
6 14790.0 14789.8 14790.6

In this paper, studies are presented for vibration of FG
cylindrical shell. The boundary conditions, clamped-clamped
(C-C) is considered in the study. Natural frequencies of the
FG cylindrical shell for this boundary conditions is computed
and plotted in Fig. 2. For this boundary conditions the
frequency first decreases and then increases as the
circumferential wave number n increases.

0 —+—C-C
40 1
N 30
I
= 20
10 1
0
0 2 4 6 8 10 12
n

Fig. 2 Natural frequencies FG cylindrical shell associated with ~ C-
C boundary conditions. (m=1, h/R=0.002, L/R=20)

For simplicity, we actually vary the value of power law
exponent whenever we need to change the volume fraction.
Varying the value of power law exponent N of the FG
cylindrical shell, natural frequencies are computed for simply
supported-simply supported boundary conditions. Results are

also computed for pure stainless steel and pure nickel shells.
All these results are plotted in Fig. 3.

70 ——N=0(SS)
——N=0(N)
—+—N=05
——N=0.7

40 ——N=1

60

——N=2
——N=5
——N=15
10 —N=30

Fig. 3 Natural frequencies FG cylindrical shell associated with
various power law exponent for C-C boundary condition.

VII. CONCLUSIONS

A study on the free vibration of functionally graded (FG)
cylindrical shell composed of stainless steel and nickel has
been presented. Material properties are graded in the thickness
direction of the shell according to volume fraction power law
distribution. The study is carried out using third order shear
deformation shell theory. The analysis is carried out using
Hamilton’s principle. Studies are carried out for cylindrical
shells with clamped-clamped (C-C) boundary conditions. The
study showed that in this boundary conditions the frequency
first decreases and then increases as the circumferential wave
number n increases. The minimum frequency occurs in
between n equals 2 and 3 for this boundary conditions. The
results showed that one could easily vary the natural
frequency of the FG cylindrical shell by varying the volume
fraction.
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