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Abstract—Greenhouse gases (GHG) emissions impose major 

threat to global warming potential (GWP). Unfortunately 
manufacturing sector is one of the major sources that contribute 
towards the rapid increase in greenhouse gases (GHG) emissions. In 
manufacturing sector electric power consumption is the major driver 
that influences CO2 emission. Titanium alloys are widely utilized in 
aerospace, automotive and petrochemical sectors because of their 
high strength to weight ratio and corrosion resistance. Titanium 
alloys are termed as difficult to cut materials because of their poor 
machinability rating. The present study analyzes energy consumption 
during cutting with reference to material removal rate (MRR). 
Surface roughness was also measured in order to optimize energy 
consumption.  
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I. INTRODUCTION 
significant amount of greenhouse gases (GHG) is 
released in atmosphere due to the metal cutting sector. To 

protect the environment strict legislations are being developed 
and implemented by the global community. Manufacturing 
sector is also under immense pressure to avoid all 
environmental hazardous practices. Energy consumption 
during manufacturing operations is one of the key parameters 
that play an important role towards environmental burden. By 
optimizing energy requirements for a given machining 
operation greenhouse gases can be reduced.  

Many researchers have focused their work to optimize 
energy consumption with respect to the cutting conditions. 
Interaction between minimum cost and minimum energy 
consumption for machining operations revealed that minimum 
energy criterion resulted in less cost, energy consumption, and 
carbon foot print [1]. Reference [2] explored utilization of 
polynomial networks to develop models for multistage 
turning. The study investigated possibilities of maximizing 
production and minimizing production cost. An analytical 
model was developed to determine the environmental burden 
of core machining phase [3]. The research utilized energy 
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utilization, cutting mechanics and lubricant flow rate for 
developing machining model. This study revealed that energy 
consumed by a machining process is a function of product 
geometry, workpiece material and cutting environment.  

In general electrical energy is consumed in a machine tool 
to perform machining task. Reference [4] revealed detailed 
analysis of energy consumption used to perform different 
tasks during machining. The experimentation was conducted 
using injection molding, manual/ automatic milling and 
automated lathe machines. Reference [5] describes a 
methodology of calculating environmental burden of a 
machining operation. The study also provided formulation to 
calculate equivalent CO2 emissions using electrical energy 
consumption. Reference [6] proposed an online energy 
monitoring method for machine tool. It was revealed that 
energy efficiency can be increased by reducing idle time 
through efficient managerial skills or by optimizing cutting 
parameters through technical means. 

A framework consists of six steps process to characterize 
energy consumption was recommended to illustrate power and 
energy consumption [7]. The research work revealed that a 
high portion of the energy consumption was utilized in 
machine controller and idle movements. It was revealed that 
spindle utilized 35% of total energy. Reference [8] 
recommends design and process based approaches to 
minimize energy utilization. The research analysed different 
model based on kinetic energy recovery system (KERS), 
process parameter selection strategy and web-based energy 
estimation tool. It was observed that KERS can save energy up 
to 25%. An empirical expression was formulated to explain 
the interaction between energy utilization and cutting 
conditions [9]. Experimental validation of model was 
performed using different milling and turning machine tools.  

 Reference [10] represents a model for prediction of energy 
foot print of machined components. The work was conducted 
using turning experiments. The study also discussed 
boundaries and interaction of machining economics and 
environmental impact of reduction in energy consumption.  
Different machining strategies were investigated to analyse 
energy consumption of a machine tool [11]. Different 
components of a machine tool were treated as variables.  All 
numerical results were verified experimentally. The study was 
useful to evaluate different part programs with respect to their 
energy consumption. Reference [12] shows machining 
performance of six different cutting fluids. The study was 
conducted using four vegetable based and two semi-synthetic/ 
mineral based cutting fluids. Experimentation was designed 
using Taguchi (L18) mixed level parameter design. The study 
revealed that sunflower and canola based cutting fluids 
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Fig. 7 Energy consumption and surface finish at similar material 

removal rates using different cutting speeds of 30, 60 and 90 m/ min 
 
Fig. 7 shows that material removal rate of 80 mm3/ sec was 

maintained using two different cutting speeds of 30 and 60 m/ 
min. In the first case cutting speed of 30 m/ min was used with 
feed of 0.2 mm/ rev to attain 80 mm3/ sec. However for 
second reading cutting speed of 60 m/min was used with feed 
of 0.1 mm/ rev to reach 80 mm3/ sec. It was observed that for 
material removal rate of 80 mm3/ sec less energy consumption 
and better surface roughness was obtained for cutting speed of 
60 m/ min. Similar behavior was observed for material 
removal rates of 160, 120 and 240 m/ min.  This means that to 
minimize energy consumption and achieve good surface finish 
higher removal rates should be utilized by increasing the 
cutting speed. But cutting speed is directly linked with cutting 
temperature in the cutting zone that can affect tool life and 
associated wear mechanism significantly [17].     

B. Flood Environment 
In addition to dry cutting conditions the study was repeated 

for similar cutting conditions under emulsion based flood 
cooling environment.  

 

 
Fig. 8 Energy consumption and surface finish at different material 

removal rates, Vc= 30 m/ min, f = 0.1 – 0.5 mm/ rev 

Fig. 8 shows plots for energy consumption and surface 
finish for different material removal rates calculated at 
constant speed of 30 m/ min and different feed levels. Fig. 8 
shows that energy consumption decreased with increase in 
material removal rate. Optimal point at the intersection of both 
curves was slightly shifted towards higher material removal 
rate when compared with dry cutting. 

Fig. 9 represents plots for energy consumption and surface 
finish for different material removal rates calculated at 
constant speed of 60 m/ min and different feed levels. Both 
curves and their intersection followed the similar trend as in 
Fig. 8. 

 

 
Fig. 9 Energy consumption and surface finish at different material 

removal rates, Vc= 60 m/ min, f = 0.1 – 0.5 mm/ rev 
 

Fig. 10 represents plots for energy consumption and surface 
finish for different material removal rates calculated at 
constant speed of 90 m/ min and different feed levels. 
Similarly like the previous Fig. 9 optimal point was shifted 
further downward in Fig. 10.  

 

 
Fig. 10 Energy consumption and surface finish at different material 

removal rates, Vc= 90 m/ min, f = 0.1 – 0.5 mm/ rev 
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Fig. 11 Energy consumption and surface finish at similar material 

removal rates using different cutting speeds of 30, 60 and 90 m/ min 
 

Fig. 11 shows the similar behavior as explained previously 
in Fig. 7 for dry cutting environment. Higher material removal 
rates maintained by using higher cutting speeds resulted in 
better surface finish and less energy consumptions.  

IV. CONCLUSION 
The conclusions drawn from the dry and wet machining of 

titanium alloy Ti – 6Al- 4V by using uncoated carbide inserts 
are as follows: 
• It was observed in the study that increase in material 

removal rate reduces energy consumption significantly. It 
is due to the fact that machining time plays dominant role 
towards consumption of energy. 

• Increase in material removal rate results in higher cutting 
load at the contact area in cutting tool and workpiece. 
However this increase in cutting load does not 
significantly increases energy consumed during cutting. It 
was observed that energy consumption for cutting process 
is highly sensitive to feed rate as compared to the cutting 
speed.  

• It was also observed that surface roughness and energy 
consumption decreased by increasing cutting speed and 
material removal rate. Reduction in energy consumption 
with increase in feed rate is logical because high feed rate 
results in faster machining and less processing time. It is 
found in agreement with literature [18] – [20] that cutting 
speed of a machining process is directly linked with 
cutting force. Higher cutting speed generates low cutting 
forces which results in less energy consumption. However 
limitation of using higher cutting speed is that it generates 
high amount of heat during cutting process. High cutting 
temperature results in poor tool life and accelerated tool 
wear mechanisms. 

• Graphical plots of energy consumption and surface 
roughness intersect each other at certain location pointing 
out at the optimized value. These curves can be utilized to 
predict the amount of energy required for achieving 
desired surface roughness at specific material removal 
rate.  

• It was observed that optimized value at intersection point 
of two curves shifted below by an increase in material 
removal rate.  
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