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Abstract—A new strategy of control is formulated for chaos 

synchronization of non-identical chaotic systems with different 
orders using the Borne and Gentina practical criterion associated with 
the Benrejeb canonical arrow form matrix, to drift the stability 
property of dynamic complex systems. The designed controller 
ensures that the state variables of controlled chaotic slave systems 
globally synchronize with the state variables of the master systems, 
respectively. Numerical simulations are performed to illustrate the 
efficiency of the proposed method.  

 
Keywords—Synchronization, Non-identical chaotic systems, 

Different orders, Arrow form matrix. 

I. INTRODUCTION 
VER the last two decades, since the pioneering work of 
Pecora and Carroll in 1990 [1], synchronization of chaotic 

systems has attracted increasing attention in different fields of 
physics and engineering systems, such as in power converters, 
chemical reactions, biological systems, information 
processing, and especially for secure communication [18]. 
Basically, the chaos synchronization problem means making 
two systems oscillate in a synchronized manner. Given a 
chaotic system, which is considered as the master system, and 
another one, which is considered as the slave system, the 
dynamical behaviours of these two systems may be identical 
after a transient when the slave system is driven by a control 
input [12, 13].  To date, different techniques and methods 
have been proposed to achieve chaos synchronization such as 
impulsive control [19], adaptive control [20], sliding mode 
control, fuzzy control [21], optimal control [22], digital 
redesign control [23], active control law [2,9,15], and so on 
[7]. Throughout the present paper, the Benrejeb arrow form 
matrix [3, 6] is applied to synchronize two non-identical 
chaotic systems with different orders namely the Lorenz 
system and the Chen-Lee system. 

It is proved that by applying the proposed control scheme, 
the variance of the synchronization error can converge to any 
arbitrarily small bound around zero. 
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This paper is organized as follows. Section II deals with 
non-identical synchronization between Lorenz and Chen-Lee 
systems with different orders. In Section III, some concluding 
remarks are given. 

Simulation results show that the proposed method can be 
successfully used in synchronization of chaotic systems. 

II.  SYNCHRONIZATION OF NON-IDENTICAL CHAOTIC SYSTEMS 
WITH DIFFERENT ORDERS 

In this subsection, we study the problem of synchronization 
process of two different chaotic systems having different 
orders, namely the Chen-Lee system and the Lorenz system. 

A. The Chen-Lee System 
The Chen-Lee system is described by the following four 

couple first-order autonomous ordinary differential equations 
and is given by [4, 10]: 

 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 2 3 1 1

2 1 3 1 2

3 1 2 1 3 4
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m m m m

m m m m

m m m m m

m m m m m

x t x t x t a x t

x t x t x t b x t

x t x t x t c x t x t

x t d x t x t x t x t

⎧⎪ =− +⎪⎪⎪⎪ = +⎪⎪⎪⎪⎨ = + +⎪⎪⎪⎪⎪⎪ = + +⎪⎪⎪⎩

                 (1) 

 
Where 1 2 3, ,m m mx x x  and 4mx  are state variables, 1 1 1, ,a b c are 

three system parameters and 1d  is a constant defining the 
dynamic behaviours of the system.  

 Chaos of the Chen-Lee system appears, when initial 
conditions ( ) ( )1 0 2 0 3 0 4 0, , , 0.1,0.2,0.3, 0.2m m m mx x x x = − − and 

parameters( ) ( )1 1 1 1, , , 5, 10, 3.8,1.3a b c d = − − . 
The time histories of the four Chen-Lee state variables are 

drawn in Fig. 1.  
Its phase projection portraits with hyper-chaotic behaviour 

are shown in Fig. 2. 
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Fig. 1 Time histories of states of the Chen-Lee chaotic system 

 
Fig. 2 Projections of phase portrait of chaotic Chen-Lee system with 

1 1 1 15, 10, 3.8, 1.3a b c d= = − = − =   

B. The Lorenz System 
Here, we consider the following three coupled nonlinear 

autonomous first order differential equations, characterizing 
the Lorenz system [4, 11] 

 
( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 2 1

2 1 1 3 2

3 1 2 3

s s s

s s s s s

s s s s

x t a x t x t

x t cx t x t x t x t

x t x t x t bx t

⎧⎪ = −⎪⎪⎪⎪ = − −⎨⎪⎪⎪ = −⎪⎪⎩

                               (2) 

 
Where 1 2 3, ,s s sx x x  are state variables, , ,a b c are three 

system parameters. Chaos of the Lorenz system appears, when 
initial conditions ( ) ( )1 0 2 0 3 0, , 0.1,0.2,0.3s s sx x x = − and 

parameters 810, , 28
3

a b c= = = .  

The time histories of states of the Lorenz chaotic system are 
shown in Fig. 3 and its chaotic behaviours are drawn in Fig. 4. 

 
Fig. 3 Time histories of states of the Lorenz chaotic system 

 

 

 
Fig. 4 Projections of phase portrait of chaotic Lorenz system with 

810, , 28
3

a b c= = =
 

C.  Problem Statement 
We choose the Chen-Lee system as the drive system and 

the Lorenz system as the response system.  
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This implies that when the drive–response system is 
synchronized, the Lorenz system will follow the dynamics of 
the Chen-Lee system. 

Let us consider the four order master Chen-Lee system 
given as 

 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 2 3 1 1

2 1 3 1 2

3 1 2 1 3 4

4 1 1 2 3 4
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3 5

1 1
2 20

m m m m

m m m m

m m m m m

m m m m m

x t x t x t a x t

x t x t x t b x t

x t x t x t c x t x t

x t d x t x t x t x t

⎧⎪ =− +⎪⎪⎪⎪ = +⎪⎪⎪⎪⎨ = + +⎪⎪⎪⎪⎪⎪ = + +⎪⎪⎪⎩

                (3) 

 
Which drives a third order Lorenz system given as?  

 
( ) ( ) ( )( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

1 2 1 1

2 1 1 3 2 2

3 1 2 3 3

s s s

s s s s s

s s s s

x t a x t x t u t

x t cx t x t x t x t u t
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⎧⎪ = − +⎪⎪⎪⎪ = − − +⎨⎪⎪⎪ = − +⎪⎪⎩

                  (4) 

 
Where ( ) ( ) ( ) ( )1 2 3, ,

T
U t u t u t u t⎡ ⎤= ⎣ ⎦ is the active control 

function? Here, our objective is to determine the controller U  
which is required for system (4) to synchronize with system 
(3). 

 
For this purpose, we define the error dynamics between (4) 
and (3) as 
 

[ ]
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⎡ ⎤ ⎡ ⎤−⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= = −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

                                           (5) 

 
From Eq. (5), we have the following error dynamics: 

( ) ( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )
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( ) ( )

1 2 1 2 3 1 1 1

2 1 1 3 2 1 2

1 3 4 2

3 1 2 3 1 1 2 3

4 3

1
3

1
5

1(
2

1
20

s s m m m

s s s s m m

m m

s s s m m m

m

e t a x t x t x t x t a x t u t

e t cx t x t x t x t x t x t

c x t x t u t

e t x t x t bx t d x t x t x t

x t u t

⎧⎪⎪ = − + − +⎪⎪⎪⎪⎪⎪ = − − −⎪⎪⎪⎪⎪⎪− − +⎨⎪⎪⎪⎪⎪ = − − −⎪⎪⎪⎪⎪⎪⎪− +⎪⎪⎩

(6) 

  
Which can be written under the following matrix 

description [4]? 
 
( ) ( ) ( ) ( ) ( ). .ie t A e t BU t f= + +                                          (7)                                                                             

With  

( ) ( ) ( ) ( )1 2 3
T

e t e t e t e t⎡ ⎤= ⎣ ⎦                                                  (8)   
                                                                                       

( )

1

1

1 1

0
1. 1
5

1
20s

a a a

A c c

d x b

⎛ ⎞⎟⎜ ⎟⎜ ⎟−⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟= −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟− ⎟⎜ ⎟⎜⎝ ⎠

                                          (9)                   

1 0 0
0 1 0
0 0 1

B
⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠

                                                                (10)                   

And 
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( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )( ) ( ) ( )

( ) ( )

1 1 1 1 3 2

2 1 1 2 3

3 1

3 1 3 1 3 4

2 3

.

.

1
5

1.
20

1
2

s m m m

m s m

s s

s m s m

m m

f a x t ax t x t a x t

f cx t c x t x t

x t x t

f x t x t d bx t x t

x t x t

⎧⎪⎪⎪⎪⎪ = − + +⎪⎪⎪⎪ = − −⎪⎪⎪⎪ ⎛ ⎞⎪⎪ ⎟⎜+ − − ⎟⎨ ⎜ ⎟⎜⎪ ⎝ ⎠⎪⎪⎪⎪⎪ = − + +⎪⎪⎪⎪⎪⎪−⎪⎪⎪⎩

             (11) 

 
Our purpose is to design the most sufficient structure of 

controllers ( ), 1,..,3iu t i = , which will make the response 
system fulfils synchronism with the drive system.  We try, in 
the next part of the paper, to design a state feedback control 
law assuring the stabilization of the error dynamic system. 

D.  New Control Law Synchronizing Lorenz and Chen-Lee 
Systems [3] 

Now, a control law must be designed to follow 
asymptotically the trajectories of the master attractor into 
those of the slave one. 

By putting in prominent position the practical criterion of 
Borne and Gentina [5, 17], associated to the Benrejeb arrow 
form matrix [6, 16], we redefine the active control 
functions ( ), 1,..,3iu t i = , as follows:   
                                                                                       

( ) ( ) ( ). . , 1,..,3i i ij iu t f k e i j=− − ∀ =
                                  

(12) 
 

In such a way that the closed loop system 
( ) ( ) ( ) ( ) ( ). .ie t A e t Bu t f= + +                                            
( ) ( ) ( ). . .cA A BK= −            

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 11 12 13

21 1 22 23

1 31 1 32 33

. . .
1. 1 . .
5

1. . .
20s

a a k a k k

c k c k k

d k x k b k

⎛ ⎞⎟⎜ ⎟⎜ ⎟− − − −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟= − − − −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟− − − − ⎟⎜ ⎟⎜⎝ ⎠

    (13) 

 Being described by a particular canonical matrix form, 
namely the Benrejeb arrow form matrix. To satisfy this aim, 
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the parameters of correction ( ). , , 1,2,3;ijk i j i j∀ = ≠ , can be 
chosen as follows: 

 
( )

( )

( )

( )
( )
( )

( )
( )

( )

( )
( )
( ) ( )

12 12

13 13

23 23

21 21

1 31 31 1

1 32 32 1

. 0 .

. 0 . 0
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5 5

. 0 .

. 0 .

. 0 .s s

a k k a

k k

k k

c k k c

d k k d

x k k x t

⎧ ⎧⎪ ⎪− = =⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪= =⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪− = =⎪ ⎪⎪ ⎪⇒⎨ ⎨⎪ ⎪⎪ ⎪− = =⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪− = =⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪− = =⎪ ⎪⎪ ⎪⎩ ⎩

                                 (14) 

 
When the considered system (7) is stabilized by the 

feedbackU , the error will converge to zero as t →+∞ , 
which implies that the systems (3) and (4) are globally 
synchronized. To achieve this objective, U should be chosen 
such that the instantaneous gain matrix ( ).K defined by (12), 
is a 3 3× matrix. 

The following theorem is due to the application of the 
classical Borne and Gentina stability criterion [6], associated 
to the particular canonical Benrejeb arrow form matrix. 

Theorem 1. [3] The process, described by (13) is stabilized 
by the control law defined by (12), if the matrix ( ).cA , defined 
by (14), is in the arrow form and such that: 

(i) the nonlinear elements are isolated in either one row or 
one column of the matrix ( ).cA  

(ii) the diagonal elements, ( ).
iica , of the matrix ( ).cA are 

such that: 
 

( ). 0 1,2,.., 1
iica i n〈 ∀ = −                                                    (15)  

                                                                                                      
(iii) there exist 0ε〉 such that: 

( ) ( ) ( ) ( )
1

1

1

. ( . . ) .
nn ni in ii

n

c c c c
i

a a a a ε
−

−

=

− ≤−∑
                           

(16) 

 
Corollary 1. [3] The process, described by (7) is stabilized 

by the control law defined by (12) if the characteristic 
matrix ( ).cA , defined by (14), is under the arrow form and 
such that:

 (i) all the nonlinearities are located in either one row or one 
column of ( ).cA  

(ii) the diagonal elements ( ). , 1, 2,..., 1
iica i n∀ = − , of the 

matrix  ( ).cA  are strictly negative 
(iii) the products of the off-diagonal 

elements ( ) ( ). . , 1,..., 1
ni inc ca a i n∀ = − , of the matrix ( ).cA are 

non-negative 
(iv) the characteristic instantaneous polynomial ( ),.

cAP λ , 

defined by  

( ) ( ))(,. det .
cA cP Aλ λ= −

                                                 
(17) 

 
is strictly positive for 0λ =   

The parameters of correction ( ). , , 1,..,3ijK i j∀ = , which 
ensure the stability of Eq. (13), can be chosen so that the 
following constraints are accomplished: 

(i) all the nonlinearities are located in either one row or one 
column of the matrix ( ).cA  

(ii) the diagonal elements of the matrix ( ).cA are such that 
 

( )
( )

( )

( )
( )

( )

1 11 1 11

1 22 1 22

33 33

. 0 .

1 . 0 1 .
1 1. 0 .
20 20

a a k a a k

c k c k

b k b k

⎧ ⎧⎪ ⎪⎪ ⎪⎪ ⎪− − 〈 − 〈⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪− − 〈 ⇒ − 〈⎨ ⎨⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪− − 〈 − 〈⎪ ⎪⎪ ⎪⎪ ⎪⎩ ⎩
                                 

(18) 

 
 (iii) there exist 0ε〉 , such that 

 
( )

( )( ) ( )( ) ( )( )

( ) ( )( ) ( ) ( )( )

1

1 31 13 1 11

33 1
1 32 23 1 22

. . .
1 . 120 . . 1 .

5s

d k k a a k
b k

x t k k c k
ε

−

−

⎛ ⎞⎟− − − −⎜ ⎟⎜⎛ ⎞ ⎟⎜ ⎟⎟⎜ ⎜ ⎟− − − ≤−⎟⎜ ⎜ ⎛ ⎞ ⎟⎟⎟⎜ ⎜ ⎟⎝ ⎠ ⎟⎜ ⎟⎜ − − − −⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜ ⎝ ⎠⎝ ⎠

  (19)    

 
With both Eqs. (11) and (12), the error system (6) is 

reduced, in this particular case, to a nonlinear system with 
control inputs: ( ). , , 1,..,3ij ik e i j− ∀ = as functions of the error 

states 1 2 3, ,e e e . 
We make the most appropriate choice for the instantaneous 

gain matrix ( ) ( ){ }. . , , 1,..,3ijk k i j= ∀ =
=

so that the 

synchronization, between the two non-identical systems (3) 
and (4), is fulfilled.  

Among various choices of the gain matrix ( ).K , one 
possible solution is the following: 

 

( )

( )1

1

1 1

1 0
1.
5

1 1
20s

a a a

k c c

d x b

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ − + ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜= ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎛ ⎞⎜ ⎟⎟ ⎟⎜ ⎜ − +⎟ ⎟⎜ ⎜ ⎟ ⎟⎜ ⎟⎜ ⎝ ⎠⎝ ⎠

                            (20)                   

 
The error defined by Eq. (5) will converge to zero as 

t →+∞ implying that system (4) will globally synchronize 
with system (3). This can be achieved by choosing the 
previous instantaneous gain matrix ( ).K such that 
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( )
( )
( )

( )

( )

( )
( )
( )

( )
( )
( )

1
1 1 1

2 1 2 2

3 3 3

1 1

1 0 .
1 .
5

.1 1
20s

a a au t e t f

u t c c e t f

u t e t f
d x t b

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ − + ⎟⎜⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎟⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎜ ⎟⎟⎜⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎟⎜ ⎟=− −⎜⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎟⎜ ⎟⎜⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎟⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎜ ⎟⎛ ⎞ ⎟⎜⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎟⎟⎜ ⎜ − + ⎟⎟⎜ ⎜ ⎟⎟⎟⎜ ⎜ ⎟⎜ ⎝ ⎠⎝ ⎠

    (21) 

 
From equations (11) and (21), it has been proved that the 

state variables of the Lorenz system (4) should follow the state 
variables of the Chen-Lee system (3). 

The error dynamics between the Chen Lee system and the 
Lorenz system when controller is deactivated is drawn in Fig. 
5. Hence, synchronization has been provided thanks to the 
designed controller.  

The error dynamics of the coupled Chen Lee and Lorenz 
systems when controller is switched on is shown in Fig. 6. 

 
Fig. 5 Error dynamics between the Chen Lee system and the Lorenz 

system when controller is deactivated 

 
Fig. 6 Error dynamics of the coupled Chen Lee and Lorenz systems 

when controller is switched on 

III. CONCLUSION 
This paper deals with the synchronization of non-identical 

chaotic systems with different orders:  The Chen-Lee system, 
as drive, and the Lorenz system, as response, using the 
practical stability criterion of Borne and Gentina, associated to 
the Benrejeb particular arrow form matrix description.  

The different active controllers designed, with the control 
law described in this paper, ensure synchronization between 
the states of both slave system and the master system. 
Numerical simulations are also given to validate the 
synchronization approach and to prove its efficiency for non-
identical systems having different orders.                                                     

REFERENCES 
[1] Pecora LM, Carroll TL. Synchronization in chaotic systems. Phys Rev 

Lett 1990:821–4. 
[2] Bai EW, Lonngren KE. Sequential synchronization of two Lorenz 

systems using active control. Chaos, Solitons & Fractals 2000:1041–4. 
[3] S. Hammami, K. Ben Saad, M. Benrejeb. On the synchronization of 

identical and non-identical 4-D chaotic systems using arrow form matrix. 
Chaos, Solitons and Fractals 42 (2009) 101–112. 

[4] Shih-Yu Li, Zheng-Ming Ge. Generalized synchronization of chaotic 
systems with different orders by fuzzy logic constant controller. Expert 
systems with application 38 (2011) 2302-2310. 

[5] Gentina JC, Borne P. Sur une condition d’application du critère de 
stabilité linéaires à certaines classes de systèmes continus non linéaires. 
CRAS, Paris, T. 275; 1972, p. 401–404. 

[6] Benrejeb M, Gasmi M. On the use of an arrow form matrix for 
modelling and stability analysis of singularly perturbed non linear 
systems. SAMS 2001 40:509–25. 

[7] S. Hammami, M. Benrejeb, M. Feki, P. Borne. Feedback control design 
for Rössler and Chen chaotic systems anti-synchronization. Physics 
Letters A 374 (2010) 2835–2840. 

[8] Chen HK. Synchronization of two different chaotic systems: a new 
system and each of the dynamical systems Lorenz, Chen and Liu. Chaos, 
Solitons & Fractals 2005:1049–56. 

[9] U.E. Vincent. Synchronization of identical and non-identical 4-D chaotic 
systems using active control. Chaos, Solitons and Fractals 37 (2008) 
1065–1075. 

[10] Juhn-Horng Chen a, Hsien-Keng Chen b,*, Yu-Kai Lin a. 
Synchronization and anti-synchronization coexist in Chen–Lee chaotic 
systems. Chaos, Solitons and Fractals 39 (2009) 707–716. 

[11] Y.J. Sun, Solution bounds of generalized Lorenz chaotic systems, Chaos, 
Solitons & Fractals (2007), doi:10.1016/j.chaos.2007.08.015. 

[12] Nijmeijer H, Mareels IMY. An observer looks at synchronization. IEEE 
Trans Circ Syst I 1997:882–90. 

[13] Mbouna Ngueuteu GS, Yamapi R, Woafo P. Effects of higher 
nonlinearity on the dynamics and synchronization of two coupled 
electromechanical devices. Commun Nonlinear Sci Numer Simul 
2006:1213–40. 

[14] Osipov G et al. Phase synchronization effects in a lattice of non-identical 
Rössler attractors. Phys Rev E 1997:2353–61. 

[15] Ho MC, Hung YC. Synchronization of two different systems by using 
generalized active control. Phys Lett A 2002:424–8. 

[16] Benrejeb M, Borne P, Laurent F. Sur une application de la représentation 
en flèche à l’analyse des processus. RAIRO Automatique/Systems 
Analysis and Control 1982;16(2):133–46.  

[17]  Borne P, Benrejeb M. On the representation and the stability study of 
large scale systems. In: Proceedings of ICCCC conference, Bãile Felix 
Spa-Oradea, Romania; May 2008. 

[18] M. Chen, D. Zhou, Y. Shang, A new observer-based synchronization 
scheme for private communication, Chaos, Solitons & Fractals 24 (2005) 
1025–1030. 

[19] S.H. Chen, Q. Yang, C.P. Wang, Impulsive control and synchronization 
of unified chaotic system, Chaos, Solitons & Fractals 20 (2004) 751–
758. 

[20] D.V. Efimov, Dynamical adaptive synchronization, International Journal 
of Adaptive Control and Signal Processing 20 (2006) 491–507. 



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:6, No:11, 2012

1550

 

 

[21] H.T. Yau, C.S. Shieh, Chaos synchronization using fuzzy logic 
controller, Nonlinear Analysis: Real World Applications (2007), 
doi:10.1016/j.nonrwa.2007.05.009. 

[22] Y.P. Tian, X. Yu, Stabilizing unstable periodic orbits of chaotic systems 
via an optimal principle, Journal of the Franklin Institute 337 (2000) 
771–779. 

[23] S.M. Guo, L.S. Shieh, G. Chen, C.F. Lin, Effective chaotic orbit tracker: 
a prediction-based digital redesign approach, IEEE Transactions on 
Circuits and Systems I 47 (2000) 1557–1560. 

 
 
 
 
 

 


