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Abstract—The mitigation of crop loss due to damaging freezes 

requires accurate air temperature prediction models. Previous work 
established that the Ward-style artificial neural network (ANN) is a 
suitable tool for developing such models. The current research 
focused on developing ANN models with reduced average prediction 
error by increasing the number of distinct observations used in 
training, adding additional input terms that describe the date of an 
observation, increasing the duration of prior weather data included in 
each observation, and reexamining the number of hidden nodes used 
in the network. Models were created to predict air temperature at 
hourly intervals from one to 12 hours ahead. Each ANN model, 
consisting of a network architecture and set of associated parameters, 
was evaluated by instantiating and training 30 networks and 
calculating the mean absolute error (MAE) of the resulting networks 
for some set of input patterns. The inclusion of seasonal input terms, 
up to 24 hours of prior weather information, and a larger number of 
processing nodes were some of the improvements that reduced 
average prediction error compared to previous research across all 
horizons. For example, the four-hour MAE of 1.40°C was 0.20°C, or 
12.5%, less than the previous model. Prediction MAEs eight and 12 
hours ahead improved by 0.17°C and 0.16°C, respectively, 
improvements of 7.4% and 5.9% over the existing model at these 
horizons. Networks instantiating the same model but with different 
initial random weights often led to different prediction errors. These 
results strongly suggest that ANN model developers should consider 
instantiating and training multiple networks with different initial 
weights to establish preferred model parameters. 
 

Keywords—Decision support systems, frost protection, fruit, 
time-series prediction, weather modeling  

I. INTRODUCTION 
ROST damage is a significant concern for horticultural 
producers in Georgia and elsewhere in the southeastern 

United States, especially when bud formation and flowering 
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occur during late-winter and early-spring. For example, 
unseasonably cold temperatures during early 1996 and 2002 
damaged floral buds and were responsible for reduced fruit 
harvests [1]. Growers can take steps to lessen the effects of 
frost by using orchard heaters or irrigation to protect their 
trees and bushes from the worst damage, but these methods 
require advance warning of freezing conditions. 

The University of Georgia’s Automated Environmental 
Monitoring Network (AEMN) was created in 1991 and 
currently consists of 68 automated weather stations 
throughout the state of Georgia. The stations cover the breadth 
of the state’s geographic diversity, from the coastal plain in 
the southeast, through the Piedmont, and into the Blue Ridge 
Mountains in the north [2]. The solar-powered stations are 
primarily situated in rural areas where the National Weather 
Service does not provide detailed local observations. The 
monitoring stations collect weather data such as air 
temperature, relative humidity, wind speed, wind direction, 
solar radiation, and rainfall at one-second intervals. Since 
March 1996 these observations have been aggregated into 15-
minute averages, totals, and extremes, depending on the 
nature of the variable. Previous observations were aggregated 
hourly. 

Among the online decision support tools made available by 
the AEMN are short-term air temperature predictions. These 
hourly predictions range from one to 12 hours ahead and are 
available on the AEMN website, www.georgiaweather.net, 
during winter and early spring. The temperature predictions 
are generated by artificial neural network (ANN) models 
developed by Jain et al. [3] and Jain [4]. To predict 
temperature for a location, the ANNs use as inputs up to six 
hours of prior weather observations from the site. The models 
incorporate the time of day, as well as measurements of air 
temperature, humidity, wind speed, and solar radiation, and 
were developed for use from January through April. 
Classification models using ANNs to predict freeze events 
were developed by Ramyaa [5]. These networks classify 
observations into one of three classes depending on whether 
the model predicts freezing, near-freezing, or non-freezing 
conditions over a 12-hour prediction period. For the 
classification problem, the addition of recent rainfall 
observations as input variables was found to improve 
performance. ANN models have also been used to predict 
inputs to a special frost deposition model in order to more 
accurately predict frost and ice on roads and bridges [6]. 
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The previous temperature prediction and classification 
networks faced software constraints limiting the number of 
patterns used in model development to 32,000 [3], [4], [5]. 
These studies also relied on preliminary experiments that 
trained and evaluated a single network to determine the effects 
of altering model inputs or parameters. The goal of the current 
research is to improve these temperature prediction models 
using more advanced and flexible neural network 
technologies. Specifically, this research explores four possible 
methods of improving prediction accuracy: (1) increasing the 
number of training patterns, (2) including input variables 
encoding seasonal information, (3) extending the duration of 
the prior data used as inputs, and (4) varying the number of 
nodes in the hidden layer.  

II. METHODOLOGY 

A. Data Sets 
The previous temperature prediction work in the AEMN 

domain by Jain [4], trained networks using a development set 
drawn from sites which were selected so as to encompass a 
broad range of conditions. Model evaluation was performed 
using a data set composed of sites collectively representative 
of the southern and central growing regions of Georgia. The 
same sites and years were used herein allowing for a 
comparison of these new results with the previous study. The 
model development sites included Alma, Arlington, 
Attapulgus, Blairsville, Fort Valley, Griffin, Midville, Plains, 
and Savannah, which have relatively long histories of weather 
data. For these nine stations the data up to and including the 
year 2000 were included in the development set. Model 
evaluation data were from 2001 to 2005, and included patterns 
from Brunswick, Byron, Cairo, Camilla, Cordele, Dearing, 
Dixie, Dublin, Homerville, Nahunta, Newton, Valdosta, and 
Vidalia. The previous work used the same locations for the 
years 2001-2003 for evaluation [4]. To allow for a direct 
comparison to this previous work, the evaluation data in this 
study was divided into two sets: the first composed of the data 
from 2001-2003 and the second composed of the 2004-2005 
patterns. The development and evaluation sets were restricted 
to patterns from the first 100 days of the year, through April 9 
or 10 for leap and non-leap years, respectively. This range 
includes winter observations and the early growing season. 
The data sets were restricted to “low-temperature” patterns, 
those with current temperature measurements below 20°C. 
Temperatures above 20°C were found not to be associated 
with freeze events within a 12-hour prediction horizon, the 
longest such horizon considered in this research. 

Model inputs included five weather variables: temperature, 
relative humidity, wind speed, solar radiation, and rainfall. In 
addition to the current values for each observation on record, 
prior data, spaced at one hour intervals, were also included in 
each training pattern. Hourly first-difference terms for the 
current and prior weather variables were also included. Note 
that the information contained in the first-difference variables 
is implicit in the current and prior data, but providing this 

information explicitly was found to improve model 
performance. 

Each training and evaluation pattern contained two sets of 
cyclic variables associated with the time and the date of the 
observation. Because the time of day and year are periodic 
variables, simply representing each with a single input fails to 
capture all information inherent in a measurement. To 
overcome this limitation, cyclic variables were constructed 
using fuzzy logic membership functions. For the time 
variable, four such triangular functions with an output range 
of 0 to 1 were used over the domain 0000 to 2400 hours (Fig. 
1). Note that one of the variables, corresponding to the 
concept midnight, “wraps around” the domain’s upper and 
lower bounds. An analogous approach was taken to convert 
the day-of-year for each observation to four seasonal 

variables.  

B. Model Development 
Software constraints restricted the previous AEMN 

temperature prediction models to 32,000 development 
patterns. To overcome this limitation, a neural network suite 
was written in the Java programming language. This suite 
placed no limits on the size of the sets used in the training or 
evaluation process. All networks were trained via the well-
known error backpropagation (EBP) algorithm as described 
by Haykin [7]. EBP training was successfully applied in 
previous ANN research involving temperature prediction 
using AEMN data [3], [4], [5]. 

Throughout this paper, the term model is understood to be 
an ANN architecture and a set of associated parameters. A 
model is instantiated as a network by using a random seed to 
assign initial weight values and a training set order and 
subsequently training the network. That is, a model is a 
description of a group of potential networks differing only in 

 
Fig. 1 Four fuzzy logic membership functions ranging over the time 

of day 
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the set of initial weights assigned before training and the order 
in which training patterns are presented. All models explored 
in this research were based on the Ward-style network 
architecture used in previous research by Jain [3], [4]. The 
Ward network is an ANN with multiple node types that 
implement multiple activation functions [8]. The models used 
a linear input layer, three equally-sized, parallel “slabs” in the 
hidden layer, and a single, logistic output node, interpreted as 
the temperature at some prediction horizon.  

A linear transformation carried out by the input layer was 
determined for the entire model development set. Each data 
series used as an input was transformed to the range 0.1 to 0.9. 
As the transformation made use of the maximum and 
minimum values of each series in the development set, this 
range may not hold when an evaluation pattern is presented. 
The hidden layer contained three slabs using the Gaussian, 
Gaussian complement, and hyperbolic tangent activation 
functions. Fully connected, biased weight matrices connect the 
input layer to the hidden layer and the hidden layer to the 
output node. 

The networks used in this research provide a mapping of a 
vector of I real-valued inputs, x, ranging over the values  [0.1, 
0.9] onto a real value z such that 
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y is a vector of length J containing the signals of the nodes in 
the ANN’s hidden layer.  
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Instantiating a Ward-style architecture requires specifying a 

number of network parameters including the learning rate and 
momentum, initial weight range, size of the training and 
testing sets, number of hidden nodes in each slab, and the 
included input series. Variations in the learning rate, 
momentum, and the initial weight range were considered in 
preliminary studies, but these parameters were found to have a 
relatively small effect on model accuracy. For all models 
considered in this research, a learning rate of 0.1 and an initial 
weight range of    -0.1 to 0.1 were used. A momentum term 
was not included. 

ANN models are typically evaluated by instantiating a 
single network and measuring the resulting accuracy of the 

trained network for a set of patterns. Such an evaluation 
scheme assumes that the performance of a single network is 
an accurate measure of any network that may instantiate the 
model. However, due to the random nature of the initial 
weights and the training pattern ordering, there is no 
guarantee that two networks instantiating the same model will 
converge to the same final state from distinct starting points in 
the multidimensional weight space [9]. This suggests that 
another method of model evaluation, involving multiple 
networks, is warranted. 

The previous temperature prediction models developed by 
Jain [3], [4] relied on single-network evaluation. An 
alternative approach was taken in this research whereby 
multiple ANNs were trained for identical model 
configurations. These networks, referred to as instantiations, 
differed only in the initial random weights and the order of the 
patterns presented. Each network was trained on a set of 
patterns independently constructed from all available 
development patterns via random selection without 
replacement for four million learning events prior to 
evaluation. Preliminary work using this approach showed that 
the use of a testing set to determine when to stop training was 
not helpful. Test set accuracies mirrored those of the training 
sets and it was rare for an instantiated network’s accuracy to 
decrease. In addition, rare occurrences of increasing error for 
the testing set during training corresponded to the presence of 
increasing error for the training set as well. This phenomenon 
was also associated with poorly performing networks. After 
training, the mean absolute error (MAE) associated with each 
network’s temperature prediction was calculated for the entire 
development set. Because the goal of the research was to 
develop a single, highly accurate ANN, the network with the 
minimum MAE of this group was selected as the appropriate 
performance measure for a model.  

The error for the development set was used to decide 
between models so that comparisons between the final model 
and the previous research would not be biased in favor of the 
current work. A retrospective evaluation indicated that 
network MAEs for the development set are highly predictive 
of performance for the evaluation set.  

Network training took place using 30 Dell Pentium IV 
workstations in a University of Georgia computer laboratory. 
Training was stopped after four million events because 
preliminary work suggested that epoch-by-epoch 
improvements were generally inconsequential by this time. 
Processing time was also a factor in the determination of the 
number of learning events. Using the threshold of four million 
learning events allowed the fastest of the machines used to 
train and evaluate two instantiated networks in a typical 12-
hour run.  

C. Experiments 
To explore the effects of increased training set sizes on 

model performance, six models, differing only in the number 
of training patterns used, were instantiated by thirty networks 
each. Training set sizes of 10K, 25K, 50K, 100K, 200K, and 
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400K were considered. All weather variables and related first-
difference series, as well as the four diurnal variables, were 
used as inputs. A six-hour duration of prior data was used for 
this experiment. Next, to determine the effect of adding time-
of-year information to the input vector, these models were 
compared to a second group, modified to include the four 
seasonal variables. All other inputs and parameters were the 
same, including the six hours of prior data. A third experiment 
explored the effect of variations in the number of prior hourly 
observations for the environmental inputs by instantiating 
multiple models with seasonal variables for durations of two, 
four, six, 12, 18, 24, 30, 36, and 48 hours to determine if 
increasing the duration beyond six hours improved prediction 
accuracy. A fourth experiment was conducted comparing the 
accuracy of models with seasonal inputs and hidden layer 
sizes of six, 15, 30, 45, 60, 75, 105, 120, 150, 180, and 225. 
To allow a single parameter to represent the number of nodes, 
the three slabs were constrained to be of equal size, so that the 
hidden layer sizes considered ranged between two and 75 
nodes per slab. 

Finally, the best-performing model was instantiated thirty 
times for each prediction horizon from one to 12 hours ahead. 
The instantiation with the lowest MAE for the development 
set was selected to represent the model. These final models 
were then run over an evaluation set consisting of all cold-
weather patterns from 2001 through 2003. The relationships 
between target temperature, predicted temperature, and 
prediction error for the Ft. Valley site were evaluated for these 
ANNs. Additionally, the performance of the models over the 
damaging freeze events of late-February and early-March 
2002 was examined. Each model was also evaluated over a 
final set that consisted of all of the low-temperature patterns 
from the evaluation sites during winter 2004 and 2005 (those 
with a temperature no greater than 20°C at the time of the 
prediction).  

III. RESULTS AND DISCUSSION 
The results discussed here are for experiments with four-

hour prediction models. Results for other horizons were 
qualitatively similar. Overfitting was exceedingly rare and 
occurred only during runs with poor prediction accuracy. An 
MAE for the development data was calculated for networks 
associated with six different models, corresponding to training 
set sizes that ranged from 10K and 400K unique patterns. 
Each model was instantiated by thirty networks (Fig. 2). The 
most accurate network was trained over 50K patterns and had 
an MAE of 1.51°C. However, the minimum MAEs associated 
with the most accurate instantiations of the 50K and 200K-
pattern models differed by less than 0.006°C. These training 
set sizes were capable of yielding similar minimum MAEs 
over 30 network instantiations. Furthermore, there was no 
clear relationship between minimum network MAE and 
training set size for large sets. The use of single-network 
evaluation allows for the possibility of misleading 
approximations of model accuracy. In general, each model 

MAE would be approximated by making a single draw from 
the distribution of MAEs associated with the model. However, 
the range of MAE values for each model is sizable. When 
drawing a single MAE value for each model, any combination 
of values is possible, many of which could suggest markedly 
different interpretations of the results.  

The second experiment evaluated six additional models 
with seasonal input terms, corresponding to the six distinct 

 
 

Fig. 2 Multiple-network evaluation for four-hour prediction models 
distinguished by training set size. Each point corresponds to the MAE, 

calculated for all patterns in the development set, of one of the 30 
networks instantiating each model 

 
Fig. 3 A comparison of four-hour prediction models with and without 

seasonal input terms using minimum-error, multiple-network 
evaluation. Each point corresponds to the minimum MAE obtained 

over 30 networks instantiating each model 
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training set sizes. These models were more accurate than those 
without seasonal inputs for all the different sizes of the 
training set (Fig. 3). The most accurate model with seasonal 
inputs had an MAE of 1.48°C for the entire development set. 
This was an improvement of more than 0.03°C compared to 
the best model that did not consider seasonal inputs. Again 
there was no convincing evidence for a relationship between 
training set size and performance for sufficiently large sets. 
The difference between the most and least accurate model 
MAE was 0.02°C. Similar to the non-seasonal case, the 50K-
pattern model using seasonal data exhibited higher accuracy 
than the other models. To explore whether this was typical, 
the seasonal experiment was repeated. This involved the 
instantiation of 30 new networks for each of the six models. In 
the second trial, the 50K-pattern model using seasonal data 
was slightly outperformed by the three seasonal models using 
larger training sets. With no evidence to suggest a preference 
for training set size, subsequent experiments made use of all 
available development patterns. All subsequent experiments 
continued to employ four million learning events during 
training. 

Six hours was the preferred duration of prior data for 
prediction horizons of four hours or more in the prior 
temperature prediction study [4]. The current research 
compared various models with seasonal terms that differed 
only in the number of hours of prior data included as inputs. 
The results of the experiment indicate that a prior duration of 
six hours is clearly suboptimal for this horizon (Fig. 4). In 
fact, with an MAE of 1.48°C, the six-hour model was 
outperformed by all of the longer-duration models considered. 
The inclusion of 24 hours of prior data resulted in an MAE of 
1.38°C, the lowest observed in the experiment. Models with 
data from more than 24 prior hourly observations were less 
accurate. The success of the 24-hour model makes intuitive 
sense as such a history is capable of generalizing over trends 
associated with the familiar daily cycle. The decision in 
previous research to use six hours of prior data was likely due 
to the method of increasing the duration by short increments 
until evaluation errors began to increase [4]. Because that 
work relied on single-network evaluations and found that a 
network with eight hours of prior information was less 
accurate than a six-hour network, the experiment was stopped 
before exploring longer durations of prior data. The results of 
the research reported herein suggest that the use of multiple-
network evaluation can avoid such errors. 

The final experiment instantiated networks for models with 
seasonal inputs that differed in hidden layer size. Even if a 75-
node hidden layer (25 nodes per slab) was optimal for a model 
with six hours of prior data, there was no guarantee that it 
would be best for a model with 24 hours of prior data and 
seasonal inputs. The results of the experiment, which 
evaluated each model over 30 instantiations, revealed that for 
models with 24 hours of prior data, a larger network with 120 
hidden nodes (40 per slab) led to an instantiation with an 
MAE of 1.35°C, the smallest of the models considered (Fig. 
5). Increasing the total number of hidden nodes beyond this 

level did not reduce average prediction error for any of the 
models considered. The time-consuming nature of the training 
process precluded the possibility of evaluating all possible 
models. 

To establish a direct comparison between the models 
developed here and those obtained by Jain [4], 30 networks 
were instantiated for each prediction period between one and 
12 hours. For each horizon, the network having the lowest 
MAE for the development set was selected to represent the 
model. The selected networks were evaluated with the same 
2001-2003 weather data for the Brunswick, Byron, Cairo, 
Camilla, Cordele, Dearing, Dixie, Dublin, Homerville, 
Nahunta, Newton, Valdosta, and Vidalia sites used by Jain 

 
Fig. 5 A comparison of four-hour prediction models distinguished by 
hidden layer size using minimum-error, multiple-network evaluation. 

Each point corresponds to the minimum MAE obtained over 30 
networks instantiating each model. All models use three equally-

sized slabs per hidden layer 

 
Fig. 4 A comparison of four-hour prediction models distinguished by 

the duration of prior data using minimum-error, multiple-network 
evaluation. Each point corresponds to the minimum MAE obtained 

over 30 networks instantiating each model 
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[4]. These data did not include input patterns with a 
temperature greater than 20°C at the time of prediction. 

The prediction accuracies of the best ANN models 
developed in this study are compared to those obtained by Jain 
[4] in Table I. The models developed in the current research 
made use of seasonal input terms, 24 hours of prior 
observations, and 120 hidden nodes and led to an 
improvement in model MAE over all horizons. For example, 
the four-hour prediction MAE of 1.40°C is an improvement of 
0.20°C, or 12.5%, compared to the previous model. The MAE 
improvements at the one-, eight-, and 12-hour horizons of 
0.09°C, 0.17°C, and 0.16°C respectively, do not provide a 
clear pattern relative to forecast horizon. However, the percent 
improvement in the MAE compared to the previous model 
decreases as the prediction period increases, from a more than 
14% improvement at the one-hour horizon to less than 6% at 

the 12-hour horizon. The new networks were also evaluated 
for a data set consisting of the same sites with patterns from 
2004-2005. For this set the magnitudes of the errors were, in 
general, slightly smaller than those associated with the 2001-
2003 period. 

The distribution of prediction errors across all horizons is 
centered near zero, while the variance of these error 
distributions increases relative to horizon length. The 
increased divergence between predicted and observed 
temperatures at longer horizons is apparent in the plots of Fig. 
6. As prediction horizon increases, so does deviation from the 
line of perfect fit. The trend holds, specifically, in cases where 
a model fails to predict freezing temperatures. At the other 
extreme, the use of a logistic activation function in the output 
node, and the inverse of the scaling function to convert the 
output to a temperature, placed an upper bound on the model 
predictions. Because the scaling range was smaller than the 

output range of a logistic node, this bound was several degrees 
higher than the 20°C threshold used to select observations for 
the development and evaluation sets. As a result, models were 
constrained from predicting temperatures above 25°C. At 
temperatures near 25°C, models are more likely to under-
predict. As the prediction horizon increases, the number of 
observed temperatures above this threshold increases. The 
February 25 – March 1, 2002 time frame for the Fort Valley 
site provides an illustration of the relative performance of the 
final models. This period included three freeze events during 
the mornings of February 27 – March 1. The first of these 
freezes occurred shortly after 0200 on the 27th. This freeze, 
however, was not predicted by the 12-hour model (Fig. 7a). 
Instead, the 12-hour model predicted a near freeze shortly 
after the observed temperature dropped below freezing. The 
model performed much better over the second freeze period: 
both the time of onset and the severity of the freeze were 
accurately predicted. While the predicted onset of the third 
freeze was off by several hours, it still indicated an 
approaching, sustained freeze more than six hours prior to the 
temperature falling below zero. 

The eight-hour model predicted a brief freeze during the 
morning of February 27th (Fig. 7b). Though the time of onset 
and severity of the freeze were not perfect, the model 
predicted several hours of near-freezing temperatures, a 
noticeable improvement over the 12-hour model. The 
predictions for the second and third freeze events were similar 
to the 12-hour model. As a practical matter, the prediction of a 
near-freeze event by a long-horizon model would alert the 
user to the possibility of damaging temperatures. 

The four-hour model predicted the first freeze event, though 
the time of onset was off by nearly three hours (Fig. 7c). 
Subsequently, however, the model’s prediction of the severity 
of the first freeze event was quite close to the true minimum 
temperature. The four-hour model also correctly predicted the 
time of onset of the second freeze, which began later that 
evening and lasted well into the 28th. The freeze event ending 
March 1st was predicted with much better accuracy than either 
the 12- or eight-hour models managed, though time of onset 
was two hours late. 

The most useful measure of model performance, however, 
comes from evaluating the sequence of 12 predictions leading 
to severe freeze events such as those in February and March 
2002. Such a sequence is comprised of a chain of predictions 
generated at the same time for all 12 prediction horizons.  The 
observed temperatures for Fort Valley during the period from 
1400, February 28 to 1000, March 1, 2002 and the series of 
chained predictions generated at 1600 on February 28 are 
shown in Fig. 8. These predictions suggest a shallow freeze 
beginning sometime between 0300 and 0400 the following 
morning. In fact, overnight temperatures would dip below 
freezing by 2200 and bottom out below -4°C. This early, 
imprecise, series of predictions is subsequently refined in the 
presence of new data. The user, already alerted to the potential 
of damaging temperatures, could receive a much more 
accurate sequence of predictions four hours later. The 

TABLE I 
COMPARISON OF MODEL PREDICTION ACCURACY 

OVER THE EVALUATION DATASET  

Horizon 
length,  

 
hours 

Previous 
model* 

 
2001-3 
 MAE, 

°C 

Current 
model 

 
2001-3 
MAE, 

°C 

 
Improvement, 
___________  
°C                 % 

Current 
model 

 
2004-5 
MAE, 

°C 

1 0.62 0.53 0.09      14.5%  0.53 

2  0.88 0.86 

3   1.17  1.12 

4  1.60 1.40 0.20      12.5% 1.34 

5  1.62 1.55 

6  1.81 1.72 

7   1.99  1.87 

8  2.30 2.13 0.17      7.4% 2.01 

9  2.24 2.09 

10  2.36 2.19  

11   2.44  2.25 

12  2.69 2.53 0.16      5.9% 2.33 
*Jain [4] 
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predictions made using the data available at 2000 on February 
28 correctly indicate a sustained freeze lasting at least until the 
end of the 12-hour horizon (Fig. 8). These sequences of 
predictions show that the model was able to provide useful 
and actionable information to its users, even when early 
predictions were imperfect. The retrospective application of 
the final temperature prediction models to patterns from 
outside the development set suggests that users, once made 
aware of freezing or near-freezing temperature predictions, 
would be well served by checking for updated predictions 
throughout the day.  

IV. CONCLUSIONS 
The research presented in this paper explored 

improvements for the ANN models that are currently used to 
predict temperature for the Georgia AEMN data. 

Improvements included larger training set sizes, seasonal 
input terms, an increased duration of prior observations, and 
varying the size of the hidden layer. Increases to the size of 
the training set slightly reduced the prediction errors. 
However, the inclusion of seasonal variables corresponding to 
membership in the fuzzy sets winter, spring, summer, and fall 
did improve model accuracy, even though all observations 
were from the January-April period. Similar improvements 
resulted from extending the duration of historical data in the 
input vector from six to 24 hours. Models with a hidden layer 
with 40 nodes per slab were more accurate than other models 
over repeated instantiations. 

The results of this work suggest avenues for further study. 
The introduction of seasonal terms may provide a means of 
implementing an accurate year-round temperature prediction 
model. Likewise, ensemble network approaches are worth 

 
 

Fig. 6 A comparison of predicted and observed temperatures for the 2001-2003 evaluation set for the final (a) one-hour model, (b) four-hour 
model, (c) eight-hour model, and (d) 12-hour model. A solid diagonal line indicates a hypothetical perfect model 
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investigating, as networks with similar MAEs over the same 
prediction horizon often make different predictions. Finally, 
when applied to data-rich environments, a clear distinction 
should be maintained between abstract neural network models 
and actual instantiations of these models. The performance of 
a single instantiated network is not likely to be a valid 
measure of model performance. In this study, model 
evaluation over multiple instantiations led to better parameter 

selection by presenting more accurate comparisons of distinct 
models than those afforded by single-network evaluation. 
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Fig. 7 Time-series plots of observed and predicted temperatures from 

the final (a) one-hour model, (b) four-hour model, (c) eight-hour 
model, and (d) 12-hour model for the period of February 25-March 1, 

2002 

 
 

Fig. 8 A time-series plot of observed temperatures and 12-hour 
prediction tracks during February 28-March 1, 2002 


