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Abstract—Fractional Fourier Transform, which is a 

generalization of the classical Fourier Transform, is a powerful tool 

for the analysis of transient signals. The discrete Fractional Fourier 

Transform Hamiltonians have been proposed in the past with varying 

degrees of correlation between their eigenvectors and Hermite 

Gaussian functions. In this paper, we propose a new Hamiltonian for 

the discrete Fractional Fourier Transform and show that the 

eigenvectors of the proposed matrix has a higher degree of 

correlation with the Hermite Gaussian functions. Also, the proposed 

matrix is shown to give better Fractional Fourier responses with 

various transform orders for different signals. 

 

Keywords— Fractional Fourier Transform, Hamiltonian, Eigen 

Vectors, Discrete Hermite Gaussians.  

I. INTRODUCTION 

RACTIONAL Fourier transform is a generalization of 

classical Fourier Transform. The traditional Fourier 

transform decomposes the signal in terms of sinusoids, which 

are perfectly localized in frequency, but are not at all localized 

in time [1]. FrFT expresses the signal in terms of an 

orthonormal basis formed by linear chirps, whose 

instantaneous frequency varies linearly with time.  

The Kernal for continuous Fractional Fourier Transform is 

given by [2]  
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Using this kernel of FrFT, the FRFT of signal x(t) with 

transform order (α ) is computed as 
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And x(t) can be recovered from the following equation, 
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II. DISCRETE FRACTIONAL FOURIER TRANSFORM 

It is well known that Hermite Gaussians are the eigen 

functions of the DFT matrix, forming a complete and 

orthonormal set in L2. The kth
 order Hermite Gaussian can be 

given as follows:  
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The Hermite polynomials for the first six orders can be 

given as follows:  
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Defining the differential equations for the Hermite Gaussians, 

we arrive at the following expression,  
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which can be equivalently written as,  
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( D = d/dt is the differentiation and F is the classical Fourier 

transformation).  

 

or,  
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The operator S is the Hamiltonian operator associated with 

the harmonic oscillator.  

The development of the Discrete Fractional Fourier Transform 

starts with the decomposition of the DFT matrix, and in order 

for a generalized expansion from DFT to DFrFT, it is required 

that S and F are commutative[3].  The decomposition for odd 

and even N can be respectively given as,  
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with kν being the eigen vector obtained from matrix S.  

 

The decomposition becomes the same as classical Fourier 

transform for α = 1.  

 

The common eigen function set of the commuting operators 

S and F also resolves the ambiguity of the eigen value 

degeneracy for the DFT matrix. The common commuting 

operators are best chosen to be the Hermite Gaussian 

functions. As can be clearly observed, there can be many 

commuting matrices to the DFT matrix. However, we have the 

following two constraints in choosing the commuting matrix S.  

 

The commuting matrix should have the eigen functions 

that are nearly equal to the discrete counterparts of the 

Hermits Gaussian functions.  

 

The commuting matrix should be expressed in a 

generalized form for the generalized computation of the 

DFrFT.  

 

The second constraint more or less dominates in the 

development of the Hamiltonian for DFrFT while not 

deviating significantly from the first constraint. As a result, the 

matrices proposed in the past and the one proposed in this 

paper are both not perfectly commuting matrices with the DFT 

matrix, but are nearly commuting. The measure of the near 

commutation is the degree of correlation of the eigen functions 

of the matrix with the discrete counterparts of the Hermite 

Gaussian functions. 

III. DEVELOPMENT OF THE EFFICIENT HAMILTONIAN 

 

We provide an overview of the method used for developing 

a Hamiltonian which gives more efficient Fractional Fourier 

responses as compared to the previously proposed ones.  

 

The entire procedure is described as follows:  

 

We take the Hermite Gaussian functions and form matrices 

with three different orders of 4x4, 8x8, 16x16 taking them as 

the eigenvectors. We find that the matrices found cannot be 

combined in a generalized form with a significant degree of 

accuracy.  

 

We add some random small error in the Hermite Gaussian 

functions and then find the desired matrices with the three 

different orders.  

 

We try to find the generalized expression for the matrices by 

Method I described below.  

 

If found, we end the procedure, else we proceed with the 

second step with a more degree of randomness.  

 

The Method for finding a generalized form of matrices with 

the three varying orders is described as follows:  

 

A. Method I:  

 

Take the generalized expressions of the matrices described 

by Steiglits[4], Candan[3]. These matrices serve as the 

reference matrices.  

 

Take the Eucledian distance measure between the 

corresponding values of the matrix formed by the considered 

approximation to the Hermite Gaussians with the references, 

varying the values of S(1,1) and the constant in the cosine 

term in the matrices. The tolerance limit is set to be les than or 

equal to 0.001.  

 

If the tolerance limit is satisfied by the Euclidean distance 

measure for a certain set of constants, then check for the 

orders varying from 1x1 to 200x200 with a programming 

loop. 

 

 If the expression is found to be generalized for the orders 

from 1x1 to 200x200 with any set of constant values, the 

matrix is found else go to Step 2.  

 

The entire procedure is based on the theory of training sets, 

wherein we form the reference set of matrices, and compare 

our found matrices while varying two constants and adding the 

degree of randomness in the approximation to the Hermite 

Gaussian functions at each subsequent level.  
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The proposed matrix is found to be as follows: 
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IV. PERFORMANCE OF THE PROPOSED HAMILTONIAN 

 

The proposed matrix finds a greater degree of correlation 

with the discrete counterparts of the Hermite Gaussian 

functions as can be seen from Fig. 1. The 0
th

 , 2
nd

, 4
th

 , 7
th

 

order Hermite Gaussian functions are compared with the 

corresponding eigen functions of the proposed matrix. The 

figure shows the eigen functions of the matrices proposed in 

[3] which is already known to be better than that proposed in 

[4]. As a result, the eigen functions of the matrix in [4] are not 

plotted in Fig.1.  In all the cases, diamonds on the dotted line 

denote the eigen functions plot of the proposed matrix, while 

stars on a dashed line denote the eigen functions plot of the 

matrix proposed by Candan in [4]. The solid continuous curve 

with no marks for the points is the discrete Hermite Gaussian 

function of the respective order. 

 

 
Fig.1 (a) 0th order Hermite Gaussian functions (red) compared with 

the corresponding eigen functions of the proposed matrix (green) and 

the one by Candan (blue). 
 

 
 

Fig.1 (b) 2th order Hermite Gaussian functions (red) compared with 

the corresponding eigen functions of the proposed matrix (green) and 

the one by Candan (blue). 
 

 
Fig.1 (c) 4th order Hermite Gaussian functions (red) compared with 

the corresponding eigen functions of the proposed matrix (green) and 

the one by Candan (blue). 
 

 
Fig.1 (d) 7th order Hermite Gaussian functions (red) compared with 

the corresponding eigen functions of the proposed matrix (green) and 

the one by Candan (blue). 
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We now show the Fractional Fourier responses with the 

proposed matrix and compare them to the responses with that 

proposed in [2] and [4].   In each of the cases, the magnitude 

of the amplitude response is plotted.  

 
Fig.2 Signal Taken is a constant at 1. Transform Order = 0 (a) 

Response with the proposed matrix (b) Response with the matrix 

considered by Pei (c) Response with the matrix proposed by Candan. 

 

 
Fig.3 Signal Taken is a constant at 1. Transform Order = π/4 (a) 

Response with the proposed matrix (b) Response with the matrix 

considered by Pei (c) Response with the matrix proposed by Candan. 

 
Fig.4 Signal Taken is a constant at 1. Transform Order = π/2 (a) 

Response with the proposed matrix (b) Response with the matrix 

considered by Pei (c) Response with the matrix proposed by Candan. 

 

 
Fig.5 Signal Taken is a constant at 1. Transform Order = π (a) 

Response with the proposed matrix (b) Response with the matrix 

considered by Pei (c) Response with the matrix proposed by Candan. 

 

It can be easily observed that the proposed matrix response 

gives a far lesser number of ripples and has a much better 

response at the transform orders of π.  Also, it is optimal for 

transform orders ranging from 0 to π/2.  

 

We now present the Fractional Fourier responses for a 

quadratic chirp, sinusoid and a rectangular function for various 

transform orders. The response with the proposed matrix is 

found to be better for orders in between 0 and π/2, and 

significantly better for π. Though, the transform order of π is 

only the inversion of the original time signal, and for obtaining 

the same, one does not need to use the Fractional Fourier 

kernel, a better response at π provides a critical analysis of the 

proposed DFrFT kernel.  A better resemblance of the eigen 

functions of the DFrFT kernel with discrete Hermite Gaussian 

functions assures better response at π.  

 

 
Fig.6 Signal Taken is a quadratic chirp. Transform Order = 0 (a) 

Response with the proposed matrix (b) Response with the matrix 

considered by Pei (c) Response with the matrix proposed by Candan. 
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Fig.7 Signal Taken is a quadratic chirp. Transform Order = π/4  (a) 

Response with the proposed matrix (b) Response with the matrix 

considered by Pei (c) Response with the matrix proposed by Candan. 

 
Fig.8 Signal Taken is a quadratic chirp. Transform Order = π/2  (a) 

Response with the proposed matrix (b) Response with the matrix 

considered by Pei (c) Response with the matrix proposed by Candan. 
 

 
Fig.9 Signal Taken is a quadratic chirp. Transform Order = π  (a) 

Response with the proposed matrix (b) Response with the matrix 

considered by Pei (c) Response with the matrix proposed by Candan. 

 
 

Fig.10 Signal Taken is a sinusoid. Transform Order = 0  (a) Response 

with the proposed matrix (b) Response with the matrix considered by 

Pei (c) Response with the matrix proposed by Candan. 

 
Fig.11 Signal Taken is a sinusoid. Transform Order = π/4 (a) 

Response with the proposed matrix (b) Response with the matrix 

considered by Pei (c) Response with the matrix proposed by Candan. 
 

 
 

Fig.12 Signal Taken is a sinusoid. Transform Order = π/2 (a) 

Response with the proposed matrix (b) Response with the matrix 

considered by Pei (c) Response with the matrix proposed by Candan. 
 



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:7, 2008

1485

 

 

 
 

Fig.13 Signal Taken is a sinusoid. Transform Order = π (a) Response 

with the proposed matrix (b) Response with the matrix considered by 

Pei (c) Response with the matrix proposed by Candan. 

 
Fig.14 Signal Taken is a rectangular function. Transform Order = 0 

(a) Response with the proposed matrix (b) Response with the matrix 

considered by Pei (c) Response with the matrix proposed by Candan. 

 

 
Fig.15 Signal Taken is a rectangular function. Transform Order = π/4 

(a) Response with the proposed matrix (b) Response with the matrix 

considered by Pei (c) Response with the matrix proposed by Candan. 

 
Fig.16 Signal Taken is a rectangular function. Transform Order = π/2 

(a) Response with the proposed matrix (b) Response with the matrix 

considered by Pei (c) Response with the matrix proposed by Candan. 

 
Fig.17 Signal Taken is a rectangular function. Transform Order = π 

(a) Response with the proposed matrix (b) Response with the matrix 

considered by Pei (c) Response with the matrix proposed by Candan. 

IV. CONCLUSION 

We have proposed a more efficient Hamiltonian for 

describing the kernel of the discrete Fractional Fourier 

Transform by matching with the training set formed by the 

variation of the two constants in the already proposed 

matrices. The eigen functions of the proposed matrix provide a 

better approximation to the discrete Hermite Gaussian 

functions and a better Fractional Fourier response. 
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