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Abstract—A method is presented for obtaining the error 
probability for block codes. The method is based on the eigenvalue-
eigenvector properties of the code correlation matrix. It is found that 
under a unary transformation and for an additive white Gaussian 
noise environment, the performance evaluation of a block code 
becomes a one-dimensional problem in which only  one eigenvalue 
and its corresponding eigenvector are needed in the computation. The 
obtained error rate results show remarkable agreement between 
simulations and analysis.  

Keywords—bit error rate,  block codes, code correlation matrix, 
eigenstructure,  soft-decision decoding,  weight vector. 

I. INTRODUCTION

HE topic of error control codes, both block and 
convolutional codes is a mature subject on which there 

have been many papers and books [1-6]. The computation of 
the post-decoding bit error rate (BER) is usually accomplished 
using performance bounds. Although many of these bounds 
can be very tight, it is still better when an exact result can be 
found.

The method presented here obtains the exact probability of 
error for block codes using soft-decision decoding in an 
additive white Gaussian noise environment. It is based on the 
eigen-structure of the code correlation matrix, in that the 
eigenvalue-eigenvector properties determine the relevant 
parameters needed in the performance evaluation. It is found 
that under a suitable unitary transformation of the decision 
variables the performance evaluation of a block code becomes 
a one-dimensional problem in which only the dominant 
eigenvalue and its corresponding eigenvector are needed.Only 
the dimension corresponding to the largest eigenvalue need be 
considered, all others having collapsed to a point. Use is made 
of the fact that the code correlation matrix is real and 
symmetric, and therefore the eigenvectors from different 
eigenvalues will be orthogonal [7,9].

The paper is organized as follows: Section II gives the 
system model used in the analysis. It also introduces the code 
correlation matrix. Section III presents the eigenstructure of 
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the code correlation matrix. This section is really the crux of 
the method presented. Section IV presents the performance 
analysis together with the properties of the code correlation 
matrix. Section V presents the results and conclusion.  The 
Appendix covers an example to illustrate results used in the 
derivations in the body of the paper.  

II. SYSTEM   MODEL

The linear block codes considered here consist of codewords 
generated by a generator matrix and an information vector. 
The system is modelled as a binary phase-shift keying (PSK) 
with antipodal signalling and soft-decision decoding at the 
receiver. For some block codes selected for illustration, bit 
error rate results show remarkable agreement between 
simulations and analysis, and are a validation of the method.  

Fig.1 depicts the signal flow incorporating the source 
encoder and channel. The output of the channel encoder is a 
set of bits Ckj, k=1,2,…,M, and j=1,2,…, n. This is then 
transformed so as to map binary 0’s into –1, and binary 1’s 
into +1, and the result is then multiplied by a positive scalar 
constant. The channel is modelled by an additive random 
variable nj  which is assumed to be a sample of a zero-mean 
Gaussian noise process, and is therefore itself a zero-mean 
Gaussian random variable with variance N0/2. The Gaussian 
assumption is made here for tractability of the analysis.  
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Fig. 1 Transmitter and channel to generate received symbols 

In Fig.2 the receiver correlates the incoming signal rj with 
each codeword, and forms the decision variables 
U1, U2, …, UM  as shown. It then selects the largest of these to 
determine the transmitted codeword. Since the codes used are 
linear, the analysis assumes that the transmitted sequence 
corresponds to the all-zero codeword. The received symbol is 
therefore
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The correlation is achieved by multiplying the received 
symbol by  

Sij EC 12  and summing over all values of  j. 
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Fig. 2 The receiver forms the decision variables via correlation 

The receiver forms the decision variables Uk as follows: 
n
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where  Es is the signal energy.  It is more convenient to work 
with the following decision variables 
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where N0/2 is the power spectral density of the white noise. It 
can be shown that the mean and variance of Zk are,
respectively, E{Zk}=0 and Var{Zk} = wk.  From the definition 
of  Uk we have

n
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1
0/2                                      (4) 

A. Code Correlation Matrix 
The correlation of the random variables  

kZ and
lZ  is
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Since the noise is presumed to be white, 
ijji NnnE 2/0
,

the correlation becomes 

kl

n

j
ljkjlk rCCZZE

1
,                                     (6) 

which is just the inner product of the two codewords Ck and 
Cl. The code correlation matrix R is defined to have rkl as its 
elements, with the diagonal elements equal to the weight of 
the kth codeword. That is, rkk =wk.
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The next section discusses the eigenvalue-eigenvector 
properties of the code correlation of (7).  

III. EIGEN-STRUCTURE   OF   THE  CODE  CORRELATON  MATRIX

For block codes, the code correlation matrix has the following 
properties. 

Property 1: The weight vector of the code is an eigenvector 
with eigenvalue 1. That is v1 = w, and Rw = 1w. This 
eigenvalue has only one eigenvector, the weight vector.  
Incidentally 1 happens to be the largest eigenvalue, a fact not 
needed in the analysis addressed here, but found to be true in 
all the block codes examined.
Property 2:  All other eigenvectors are orthogonal to the 
weight vector:  wTvm = 0, for m  1. This follows from the fact 
the code correlation matrix is real and symmetric.  
Property 3:  Some eigenvalues may be zero; equivalently the 
null-space of the code correlation matrix may be non-empty. 
Property 4: Except for 1, the other non-zero eigenvalues 
have eigenvectors with zero-sum elements. For the eigenvalue  

m the corresponding eigenvector vk has  elements satisfying  
v1,m,+ v2,m + … +vM,m = 0.

The justifications for the first and last of these properties are 
provided next. The remaining two do not need justification 
beyond what is already stated.  

A. The Weight Vector as an Eigenvector
The code correlation matrix is given by R = CCT. The weight 
vector is w = C1n, where 1n is the n 1 vector of all ones. To 
show that the weight vector is an eigenvector of the code 
correlation matrix, it is considered that 
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 Using the fact that n
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substituting  in (7) yields 
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where the order of summations has been changed in the last 
line. The inner-most sum (over p) is the inner product between 
column-j and column-q of the codeword array C.  

When the index j is fixed, the sums (over p) are evaluated 
for each value of q, and added together from q = 1 to q = n. It 
turns out that the resulting sum in parentheses is the same, 
regardless of the value of j. This is observed  to hold for all 
the linear codes examined in this work. The value of this sum 
is 1, the eigenvalue for the weight vector.  Accordingly,

n

q

M

p pqCpjC
1 1

1
                                (10) 

where j is any legitimate column index. With this result the 
expression in  (8) becomes 

mw
n

j
mjm C 1

1
1Rw                         (11) 

from which it is evident that  
wRw 1                             (12) 
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indicating that the weight vector is an eigenvector of the code 
correlation matrix, with 1 as the corresponding eigenvalue. 
The expression in (10) for the eigenvalue consists of two 
nested sums. The inner sum is found to equal 2k-1 for q = j, 
and to equal 2k-2 for the remaining n - 1 values of q. This is 
found to hold for all the linear block codes examined in this 
paper. Of course it can be proved by using the generator 
matrix of the code and the information sequences used to 
create the code array. The present paper omits that exercise, 
and instead uses the observations made from the codes 
examined.  The total in (10) is 2k-1  + 2k-2 (n-1), which gives 

12 2
1 nk                          (13) 

Thus, the eigenvalue depends only on n and k, which are the 
two code parameters.  

B. Other Non-Zero Eigenvalues 
As before vm = Cx is any any of the eigenvectors 
corresponding to m  for m 1 with the vector x being n 1.  In 
a parallel development to the case for the weight vector,  
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 Using the fact that n
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substituting  in (14) yields 
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The inner-most sum (over p) has appeared before; it equals 2k-

1  for q = j and equals 2k-2  for q  j.
n
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This can be re-written as 
n

j

n

q qxjxmj
k

m Cv
1 1
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The sum over q has been shown to be zero, and therefore 
n

j
mj

k
m jxCv

1

22R                              (18) 

The right hand side is seen to represent the m-th component of  
Cv, i.e. the m-th component of the eigenvector, v. This leads 
to the result Rv = kv,  which says that the non-zero eigenvalue 
sought is 

22k
m          m  1                        (19) 

The eigenvalue obtained in (13) is n+1 times m. Since  n > 1 
a comparison of (19) with (13) shows that 1 corresponding to 
the weight vector the largest eigenvalue of the code 
correlation matrix. 

C.  Zero-Sum Eigenvectors 
Since the code correlation matrix is real and symmetric, the 
eigenvectors vm corresponding to m with m  1 are 

orthogonal to the weight vector. For the presentation here the 
vector Cx represents any of the eigenvectors vm, where the 
vector x  is n 1.
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The double sum in parentheses in (20) brackets has been 
shown to equal 1, independent of j. Thus  

0
1

n

j
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an intermediate result which will be used shortly.  Continuing 
these proceedings,  the sum of the elements of this vector is 
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Changing the order of summations gives  
n

j

M

p pjCj
M
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1 11
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At this point it is important once again to invoke an observed 
result form the code array, that the sum in parentheses is the 
sum of the elements in column-j of the code array. This sum is 
found to be a constant  independent of j. In fact, it is found to 
equal 2k-1, where k is the number of information bits in the 
n-bit codeword. As noted previously in connection with (10) 
here too it is possible to prove this using the generator matrix 
of the code and the information sequences used to generate the 
codewords. For the same reason given earlier, the paper uses 
the observations made on the linear codes examined.  
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The sum on the right has been shown in (21) to be zero. 
Therefore

M

p
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1
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which shows that the eigenvectors belonging to the non-zero 
eigenvalue  m for m 1 have zero-sum elements. That is the 
elements sum to zero. 

D. Number of Zero-Sum Eigenvectors 
The weight vector is the only vector corresponding to the 

eigenvalue 1. As for the other non-zero eigenvalues the 
condition in (21) involves n variables. This means that there 
are n-1 free variables, and therefore n-1 eigenvectors 
corresponding to the eigenvalue m for m 1.  Specifically the 
expression in (21) can be used to obtain the eigenvectors as 

1
1
0

0

,,

1

1
0
0

,

1

0
1
0

,

1

0
0
1

CCCCCx

              (26) 

This says that the eigenvectors are obtained by subtracting the 
last column of the code array from each of the first n-1 
columns   of the code array C. It is noted that while (26) uses 
the last column of the code array to create the n-1 vectors, any 
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one column could have been used. The same set of vectors 
will be obtained, although in a different order.

These together with the weight vector constitute a total of n 
eigenvectors. Since the code correlation matrix is M M,
where M = 2k – 1, a total of M vectors is required. The 
remaining (M – n) vectors must come from the null space of 
the code correlation matrix. While it is possible to obtain 
expression for the vectors in null space of the code correlation 
matrix, this is not addressed here since it is not needed in 
meeting the present objectives. These vectors from the null 
space can be transformed by the Gram-Schmidt process [7-9] 
if necessary, to make them orthogonal to the vectors already 
obtained, and also to be mutually orthogonal themselves. 

This completes the discussion of the eigen-structure of the 
code correlation matrix for the purposes of the paper. It is now 
possible to return to the issue of analyzing the performance of 
the block codes under the scenario described previously in 
Section II.  

IV. PERFORMANCE ANALYSIS
Referring to (1) and (2) and assuming that the transmitted 
codeword is the all-zero codeword, the receiver makes the 
correct decision if and only if Uk – U0 < 0, for k=1,3, …,M, a 
requirement which together with (3) translates  to  

0

2
N
EwZ S

kk
  for  k=1,2, …,M.                               (27) 

The event of a correct  symbol detection corresponds to the 
joint event  

MEEE 21
 where 

kkk wZE     k=1,2,…,M            (28) 

A. Transformation of the Decision Variables 
The analysis would be easier when the events are disjoint, 
which is achieved by applying a unitary transformation to the 
space of the random variables Z1, Z2, …, ZM. The 
transformation of random variables to facilitate analysis is 
employed in many texts [8,10]. Under the transformation, the 
two points (- , - , - , …, - )T and (w1, w2, w3, … wM)T will 
be mapped into new image points. To this send the following 
transformation is applied  

X = VTZ                                              (29) 
where V is the matrix of eigenvectors selected to have 
orthornormal columns. That is  

IVVT                                           (30) 
To determine the image of the two points referred to above, it 
is considered that the first vector in the matrix V is the 
normalized weight vector v1 = w/||w||, and all the other vectors 
in V  are orthogonal to w.  Accordingly the image of the point 
(w1, w2, w3, … wM)T will be (||w||, 0, 0, …, 0)T. For the other 
point the limit 

MwwwB
B

, ,,21lim   is considered, which 

gives the image as ,,lim 00,wB
B

, using the fact that 

the other vectors in V are orthogonal to the weight vector. 
It must be stated immediately here that the results obtained later  

by this consideration are found to be in agreement with those found 
by simulation.  When the limit is taken, the image of the point in 
question is seen to be (- , 0, 0, …, 0)T.

The random variables Z1, Z2, …, ZM are zero-mean and jointly 
Gaussian in distribution. In such cases the result of the 
transformation in (29) would normally be a new set of random 
variables X1, X2, …, XM which are statistically independent, and 
with a Gaussian distribution, given that the original set is Gaussian. 
Here the situation is much simpler, in that the transformation has 
produced the mapping as shown in Fig.3 
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Fig. 3  Mapping of  the Limits

In the upper part of the figure the variables Z1 Z2,..,ZM  each varies  
as shown by the arrows. In the lower part of the figure only X1 varies 
(as shown by the arrow); the other variables X2, X3…,XM have 
collapsed to zero. Therefore the result of the transformation is to 
produce one random variable X1, and reduce the others to probability 
masses at zero.  

B. Probability of Correct Symbol 
The probability of correct symbol is then given by   

01 /2Pr NEwXP SCW
               (31) 

The original set of random variables are each Gaussian by 
assumption. Therefore since the transformation is linear, the resulting 
random variables should also be Gaussian. Here only one random 
variable results. The variance of this random variable is the 
eigenvalue corresponding to the largest eigenvalue 1  of the code 
correlation matrix. Accordingly the probability of correct symbol is 
found to be 
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By an appropriate change of variable, this can be expressed as 
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where erf(x) and erfc(x) are the error function and the 
complementary   error function, respectively. 
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C. Bit Error Probability 
Since a word consists of n bits, an estimate of the bit error probability  
Pb can be  can be obtained  from PCW by using 

1/n1 CWP
b

P                                       (34) 

where n is the nmber of bits in a codeword. 

V. RESULTS AND CONCLUSION
Fig.4 shows results for the correct symbol probabilities for the (7,4,3) 
BCH code. One set is obtained via simulation (diamonds) and the 
other via analysis  (solid line). These are in the upper part of the 
figure. Also provided are the corresponding results for the uncoded 
symbols.  It is observed that there is agreement between the results 
from simulation and  analysis. Needless to say, the results obtained 
via coding are better than those without. 
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Fig. 5. Comparison  of  bit error probabilities 

Fig.5 gives a comparison of bit error probabilities using results from 
simulation, analysis, and uncoded symbols. Again, the simulation 
and anlysis results exhibit agreement. The uncoded symbol results 
(upper trace) indicate a higher bit error probability than the ones 
obtained by coding. 

This work has presented a method of computing the  error 
probability for a block code using the eigenvalue-eigenvector 
structure of the code correlation matrix. It is found that there is one 
largest eigenvalue whose only eigenvector  is the weight vector. The 
other eigenvectors have elements that add up to zero.

The  largest eigenvalue and its eigenvector (the weight vector) are 
used to determine the symbol error probability of a block code using 
BPSK and soft-decision decoding. A comparison of the simulation 
and analysis results provides validation of the analysis presented. 

APPENDIX
The codewords are arranged in rows to form the matrix C as 
given below. 
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In this array, the all-zero codeword is not sown. As an 
illustration the (7,4,3) BCH code with generator matrix G 

1011000
1110100
1100010
0110001

G
(35)

has the codewords given in Table I 

TABLE I  CODEWORDS OF THE (7,4,3) BCH CODE 
Index codeword weight 

1 0 0 0 1 1 0 1 3 
2 0 0 1 0 1 1 1 4 
3 0 0 1 1 0 1 0 3 
4 0 1 0 0 0 1 1 3 
5 0 1 0 1 1 1 0 4 
6 0 1 1 0 1 0 0 3 
7 0 1 1 1 0 0 1 4 
8 1 0 0 0 1 1 0 3 
9 1 0 0 1 0 1 1 4 
10 1 0 1 0 0 0 1 3 
11 1 0 1 1 1 0 0 4 
12 1 1 0 0 1 0 1 4 
13 1 1 0 1 0 0 0 3 
14 1 1 1 0 0 1 0 4 
15 1 1 1 1 1 1 1 7 

and the code correlation matrix is given by the array shown in 
Fig.6. The elements of the weight vector appear as the 
diagonal elements in the matrix.  The matrix is seen to be 
symmetric and has real elements.  

Through other methods of determining the eigenvalue, and 
it can be established that the largest eigenvalue is 32, and the 
other non-zero eigenvalue is 4. These agree with (13) and 
(19), respectively. That is 1 = (7+1) 24-2 = 32 and m = 24-

2 = 4.  form m  1..
Other codes are given below so as to enable comparisons 

and validation of some the expressions given in the analysis. 
The example of the (3,2,2) code is simple enough that the 
results can be checked very quickly, without much effort. The 
other example is (6,3,3) code.  
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3 2 1 1 2 1 2 1 2 1 2 2 1 0 3 
2 4 2 2 2 2 2 2 2 2 2 2 0 2 4 
1 2 3 1 2 1 2 1 2 1 2 0 1 2 3 
1 2 1 3 2 1 2 1 2 1 0 2 1 2 3 
2 2 2 2 4 2 2 2 2 0 2 2 2 2 4 
1 2 1 1 2 3 2 1 0 1 2 2 1 2 3 
2 2 2 2 2 2 4 0 2 2 2 2 2 2 4 
1 2 1 1 2 1 0 3 2 1 2 2 1 2 3 
2 2 2 2 2 0 2 2 4 2 2 2 2 2 4 
1 2 1 1 0 1 2 1 2 3 2 2 1 2 3 
2 2 2 0 2 2 2 2 2 2 4 2 2 2 4 
2 2 0 2 2 2 2 2 2 2 2 4 2 2 4 
1 0 1 1 2 1 2 1 2 1 2 2 3 2 3 
0 2 2 2 2 2 2 2 2 2 2 2 2 4 4 
3 4 3 3 4 3 4 3 4 3 4 4 3 4 7

Fig. 6 Elements of the code correlation matrix for  the (7,4,3) BCH 
Code

The (3,2,2) code has the non-zero codewords given in 
Table II,

TABLE  II  CODEWORDS OF THE (3,2,2)  CODE 
Index codeword weight 

1 0 1 1 2 
2 1 0 1 2 
3 1 1 0 2 

and the code correlation matrix   

211
121
112

R . (36)

The eigenvalues of this matrix are easily computed, and 
verified from the text, using k = 2 and n = 3 in(13) and (19), 
to be 1 = 4 and 2 = 1. The corresponding eigenvectors, 
already orthonormalized are found to be 
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Table III gives codewords of the (6,3,3) code and their weight 
respective weights 

TABLE III  CODEWORDS OF THE (6,3,3) BCH CODE 
Index codeword weight 

1 0 0 1 0 1 1 3 
2 0 1 0 1 1 0 3 
3 0 1 1 1 0 1 4 
4 1 0 0 1 0 1 3 
5 1 0 1 1 1 0 4 
6 1 1 0 0 1 1 4 
7 1 1 1 0 0 0 3 

The code correlation matrix of this code is found to be 

3 1 2 1 2 2 1 
1 3 2 1 2 2 1 
2 2 4 2 2 2 2 
1 1 2 3 2 2 1 
2 2 2 2 4 2 2 
2 2 2 2 2 4 2 
1 1 2 1 2 2 3

Fig.7 Elements of the code correlation matrix for  the (6,3,3) Code 

The non-zero eigenvalues are found to be  1 = 14 and 2 = 2. 
with the eigenvalectors 
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           (38) 

There is one vector left, that needs to come from the null-
space of the code correlation matrix. It is observed that the 
first vector (parallel to the weight vector) is orthogonal to each 
of the others. Also the vectors are not mutually orthogonal,
and will  need the Gram-Schmidt process. The codes, their 
code correlation matrices and the corresponding eigen-
structures are given in this Appendix to provide a means to 
verify the findings of the work. 
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