
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:4, 2009

1134

Sparse Networks-Based Speedup Technique for

Proteins Betweenness Centrality Computation
Razvan Bocu, University College Cork, Dr Sabin Tabirca, University College Cork

Abstract—The study of proteomics reached unexpected levels of
interest, as a direct consequence of its discovered influence over some
complex biological phenomena, such as problematic diseases like
cancer. This paper presents the latest authors’ achievements regarding
the analysis of the networks of proteins (interactome networks), by
computing more efficiently the betweenness centrality measure. The
paper introduces the concept of betweenness centrality, and then
describes how betweenness computation can help the interactome net-
work analysis. Current sequential implementations for the between-
ness computation do not perform satisfactory in terms of execution
times. The paper’s main contribution is centered towards introducing
a speedup technique for the betweenness computation, based on
modified shortest path algorithms for sparse graphs. Three optimized
generic algorithms for betweenness computation are described and
implemented, and their performance tested against real biological
data, which is part of the IntAct dataset.

Keywords—Betweenness centrality, interactome networks, protein-
protein interactions, sub-communities, sparse networks, speedup tech-
nique, IntAct.

I. INTRODUCTION

A. Interactome networks and their importance

THE concept of interactome networks represents a very

important biological construct. It is widely used to de-

scribe the protein interactions that determine the organization

and function of a biological organism. These networks feature

a complex structure that makes any research endeavour to be

complex. Nevertheless, a proper understanding of the general

structure of the protein interactions is necessary, as they con-

sistently influence the function of a biological organism as a

whole, from the simplest to the most complex ones. Therefore,

it is mandatory to discover more efficient techniques that can

be applied to the study of the structure and properties of the

interactome networks.

Betweenness centrality is one of the centrality measures that

allows for the interactome networks to be properly analyzed,

because it essentially allows for various functional protein

clusters to be determined with a high degree of accuracy. A

classical betweenness algorithm: the Brandes algorithm, which

computes the betweenness centrality of the nodes (proteins).

The Brandes algorithm [13] proves to be efficient enough in

practice, featuring a complexity of O(nm + n2 log n), where

n is the number of vertices and m is the number of edges. It

normally processes a network with thousands of nodes and

tens of thousands of edges in a few hours. The Newman-

Girvan algorithm [1, 6] is another classical construct dedicated

Razvan Bocu is a PhD Researcher and demonstrator in the Department of
Computer Science, University College Cork, email: razvan.bocu@cs.ucc.ie

Dr Sabin Tabirca is a researcher and Senior Lecturer in the Department of
Computer Science, University College Cork

to computing the betweenness centrality for edges. Although it

is an important algorithmic construct, it still does not perform

as expected in terms of execution times, as it processes a net-

work with thousands of nodes and tens of thousands of edges

in more than ten hours on a standard Intel Pentium Dual Core

machine. One of the authors’ previous papers proposes a new

algorithm that is able to optimize the betweenness computation

for a network featured by thousands of nodes and tens of

thousands of edges. This approach is based on the Dijkstra’s

algorithm and reduces the computation time for a network

with thousands of nodes by up to 90% in the worst case. This

paper extends further the analysis regarding the optimization

of betweenness computation algorithms. The additional gain

in performance is significant and the underlying mechanism is

worth to be explained thoroughly.

The optimization technique takes into account an essential

experimental observation of the authors and of some other

preceding authors that are acknowledging the sparse nature

of the interactome networks. Therefore, classical shortest

path and betweenness algorithms perform sub-optimally when

applied to these large-scale biological networks. This remark

led us to the creation of three novel betweenness computation

algorithms that are based on three shortest path algorithms,

which optimize the computation process in the case of large

sparse networks.

The paper will conduct, at first, a brief literature review on

the existing relevant works on betweenness and shortest path

computation. The second section will expand on the theoretical

aspects related to our research. Thus, it will introduce the

concepts of graph and betweenness. Moreover, the measures

that are used by any betweenness computation algorithm are

introduced and explained. The second section will also review

the classical sequential solutions usually used to compute the

betweenness centrality measure. We shall move on then and

introduce the concept of sparse networks and explain why

they are suitable for optimizing the betweenness centrality

computation for large-scale biological networks. The third

section will describe in detail the sparse networks-based opti-

mization technique, ehich is based on three modified shortest

path algorithms. The fourth section will present the testing

procedure that will prove the effectiveness of the optimization

technique. The tests are run on real biological data that is part

of the IntAct dataset [15]. The performance gain is analyzed

in depth and the suitability of the optimization technique fully

assessed.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:4, 2009

1135

B. Relevant existing works

The research workflow that produced the results that are

presented in this paper is based on valuable results that are

the consequences of a thorough and extensive research activ-

ity. Therefore, this subsection will enumerate and succinctly

describe the main existing research works, which contributed

to the advances proposed in this paper.

Although the scientific literature related to betweenness is

not excessively extensive, there are enough papers and research

projects that are worth to be mentioned. Among these, we shall

select the ones that had a decisive influence on our research

pathway.

One of the first extensive works on betweenness belongs

to Newman and Girvan. The Newman-Girvan algorithm is

one of the methods used to detect communities in complex

systems. The notion of a ”community structure” is related to

that of clustering, though it isn’t quite the same. A community

consists of a subset of nodes within which the node-node

connections are dense, and the edges to nodes in other

communities are less dense. There are numerous alternative

method for detecting communities in networks. These include

hierarchical clustering, partitioning graphs to maximize quality

functions such as network modularity, k-clique percolation, etc

[2]. Nevertheless, we preferred to make use of the Newman

and Girvan conceptual system due to its structural articulation

and practical usage in many situations. The Newman-Girvan

algorithm is particularly used to compute betweenness for

edges (links) that connects the nodes (proteins) in a network.

The Brandes algorithm proves that betweenness can be

computed exactly even for fairly large networks. It introduces

more efficient algorithms based on a new accumulation tech-

nique that integrates well with traversal algorithms solving

the single-source shortest-paths problem, and thus exploiting

the sparsity of typical instances. The range of networks for

which betweenness centrality can be computed is thereby

extended significantly [13]. Moreover, it turns out that all

standard centrality indices based on shortest paths can thus

be evaluated simultaneously, further reducing both the time

and space requirements of comparative analyses.

It has a significantly improved structure, which makes it

run faster and improves its general readability and usability.

As a natural consequence, the algorithm is able to enlarge

the O(n3) bottleneck and requires O(nm+n2logn) to execute.

This is a major improvement, which can prove very important

for a high-scale network, featured by thousands of nodes.

Before the Brandes algorithm was released, the analysis of

a large network featured by thousands of nodes and tens of

thousands of edges was prohibitive. The Brandes algorithm

scales sensibly better than any previous implementation of an

algorithm that computes the betweenness centrality measure.

As an example, processing networks with thousands of nodes

was previously a challenging task, which is made an accessible

one using the new Brandes algorithm.

The idea of betweenness is tightly related to the idea

of shortest path computation, as we shall see in the next

section. As a consequence, it is very important to compute

the shortest paths in the analyzed network as efficiently as

possible. Following a series of theoretical and experimental

activities carried on interactome networks, it was concluded

that interactome networks feature a sparse nature, and we’ll

also expand on this in the following section. Therefore, it

is essential for an efficient sequential betweenness algorithm

applied on interactome networks, to use a shortest path al-

gorithm that is designed to optimize computations on sparse

networks. Essentially, we created three novel betweenness

computation algorithms that make use of three shortest path

algorithms that are specially designed for sparse networks, the

Wagner algorithm, the Ramalingam-Reps algorithm and the

Pettie algorithm. The following sections will describe these

three algorithms in more detail.

II. THEORETICAL BACKGROUND

A. Basic theoretical concepts

In the most common sense of the term, a graph is an ordered

pair G=(V,E), comprising a set V of vertices or nodes together

with a set E of edges, which are two-element subsets of V. To

avoid ambiguity, this type of graph may be described precisely

as undirected and simple. Using the terminology peculiar to

interactome networks, proteins are modeled as vertices and the

biological links as edges.

Within graph theory and network analysis, there are various

measures of the centrality of a vertex within a graph that

determine the relative importance of the vertex within the

graph. For example, applied to the social networks study,

centrality may offer an accurate measure of how important

is a person in a certain network. Moreover, centrality is

an essential concept for other types of networks, such as

biological networks or interactome networks. In this particular

case, the centrality may measure the importance of a certain

protein in the network, or the relative importance of a certain

sub-community (group of proteins) in the network. In the

theory of space syntax, centrality specifies how important a

room is within a building or how well-used a road is within an

urban network. Basically, there are four measures of centrality

that are widely used in the network analysis: degree centrality,

betweenness, closeness, and eigenvector centrality [1].

Betweenness is a centrality measure based on shortest

paths, widely used in complex network analysis. One of the

fundamental problems in network analysis is to determine

the importance (or the centrality) of a particular vertex (or

an edge) in a network. Some of the well-known metrics for

computing centrality are closeness, stress and betweenness. Of

these indices, betweenness has been extensively used in recent

years for the analysis of social interaction networks, as well as

other large-scale complex networks. Some applications include

lethality in biological networks, study of sexual networks and

AIDS, identifying key actors in terrorist networks, organi-

zational behavior, and supply chain management processes.

Betweenness is also used as the primary routine in popular

algorithms for clustering and community identification in real-

world networks. For instance, the Girvan-Newman algorithm

iteratively partitions a network by identifying edges with

high betweenness scores, removing them and re-computing

centrality scores.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:4, 2009

1136

Betweenness centrality can be computed both for nodes

and for edges. The computation technique is exactly the same

both for nodes and for edges, as it involves the computation

of the distance matrix for a certain node or edge. Therefore,

we shall briefly describe the betweenness centrality for nodes

(vertices), which is a centrality measure of a vertex within

a graph. Vertices that occur on many shortest paths between

other vertices have a higher betweenness than those that do

not. For a graph G=(V,E) with n vertices, the betweenness

CB(v) of the vertex v is given by the following formula:

CB(v) =
∑

s �=t�=v∈V

σst(v)
σst

where σst is the number of geodesic shortest paths from

vertex s to vertex t, and σst(v) is the number of shortest

geodesic paths from vertex s to vertex t that pass through

a vertex v. This may be normalized by diving through the

number of pairs of vertices excluding v, which is (n−1)(n−2).

B. Review of the classical betweenness solutions

The Brandes algorithm proves that betweenness can be

computed exactly even for fairly large networks. It intro-

duces more efficient algorithms based on an accumulation

technique that integrates well with traversal algorithms solving

the single-source shortest-paths problem, and thus exploiting

the sparsity of typical instances. The range of networks for

which betweenness centrality can be computed is thereby

extended significantly [13]. Moreover, it turns out that all

standard centrality indices based on shortest paths can thus

be evaluated simultaneously, further reducing both the time

and space requirements of comparative analyses.

It has a significantly improved structure, which makes it

run faster and improves its general readability and usability.

As a natural consequence, the algorithm is able to enlarge the

O(n3) bottleneck and requires O(nm + n2logn) to execute.

This is a major improvement, which can prove very important

for a high-scale network, featured by thousands of nodes.

Before the Brandes algorithm was released, the analysis of

a large network featured by thousands of nodes and tens of

thousands of edges was prohibitive. The Brandes algorithm

scales sensibly better than any previous implementation of an

algorithm that computes the betweenness centrality measure.

As an example, processing networks with thousands of nodes

was previously a challenging task, which is made an accessible

one using the Brandes algorithm.

The algorithm introduces the concept of the dependency of

a vertex s ∈ V on a single vertex v ∈ V , defined as:

δs•(v) =
∑

t∈V (δst(v))

The crucial observation is that these partial sums obey a

recursive relation. Following, we’ll present some important

relations, without demonstration, as this is beyond the scope

of this paper. If there is exactly one shortest path from s ∈ V

to each t ∈ V , the dependency of s on any v ∈ V obeys [13]:

δs•(v) =
∑

w:v∈Ps(w)(1 + δs•(w))

The dependency of s ∈ V on any v ∈ V obeys:

δs•(v) =
∑

w:v∈Ps(w)(
σsv

σsw

· (1 + δs•(w)))

Betweenness centrality can be computed in O(nm +
n2 log n) time and O(n + m) space for weighted graphs. For

un-weighted graphs, the running time reduces to O(nm) [13].

The practical relevance of the asymptotic complexity im-

provement achieved by accumulating dependencies was eval-

uated. Also, weighted and un-weighted versions of this algo-

rithm for directed and undirected graphs using various datasets

in order to test each implementation, were implemented. Thus,

we determined that a Brandes-based betweenness computation

application performs well in terms of processing times for

networks featured by up to 4500 nodes.

To sidestep the shortcomings of the hierarchical clustering

method, Newman and Girvan propose an alternative approach

to the detection of communities. Instead of trying to construct

a measure that tells us which edges are most central to commu-

nities, we focus instead on those edges that are least central,

the edges that are most between communities. Rather than

constructing communities by adding the strongest edges to an

initially empty vertex set, we construct them by progressively

removing edges from the original graph. Vertex betweenness

has been studied in the past as a measure of the centrality and

influence of nodes in networks. First proposed by Freeman, the

betweenness centrality of a vertex i is defined as the number of

shortest paths between pairs of other vertices that run through

i. It is a measure of the influence of a node over the flow

of information between other nodes, especially in cases where

information flow over a network primarily follows the shortest

available path.

To find which edges in a network are most between other

pairs of vertices, they generalize Freeman’s betweenness cen-

trality to edges and define the edge betweenness of an edge

as the number of shortest paths between pairs of vertices that

run along it. If there is more than one shortest path between

a pair of vertices, each path is given equal weight such that

the total weight of all of the paths is unity. In the case a

network contains communities or groups that are only loosely

connected by a few intergroup edges, then all shortest paths

between different communities must go through one of these

few edges. Thus, the edges connecting communities will have

high edge betweenness. By removing these edges, we separate

groups from one another and so reveal the underlying com-

munity structure of the graph. The algorithm they propose for

identifying communities is simply stated as follows, specifying

only the main steps, the pseudo-code will follow:

• Calculate the betweenness for all edges in the network

• Remove the edge with the highest betweenness

• Recalculate betweennesses for all edges affected by the

removal

• Repeat from step 2 until no edges remain

As a practical matter, we calculated the betweennesses by

using the algorithm of Newman and Girvan, which calculates

betweenness for all m edges in a graph of n vertices in time

O(mn). Because this calculation has to be repeated once for

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:4, 2009

1137

the removal of each edge, the entire algorithm runs in worst-

case time O(m2n), which ensures a decent computation in

terms of execution times for networks of proteins featured by

up to 4000 nodes. However, after the removal of each edge,

we only have to recalculate the betweennesses of those edges

that were affected by the removal, which are at most only

those in the same component as the removed edge. This means

that running time may be better than worst-case for networks

with strong community structure (those that rapidly break up

into separate components after the first few iterations of the

algorithm). To try to reduce the running time of the algorithm

further, one might be tempted to calculate the betweennesses

of all edges only once and then remove them in order of

decreasing betweenness. We find, however, that this strategy

does not work well, because if two communities are connected

by more than one edge, then there is no guarantee that all of

those edges will have high betweenness-we only know that at

least one of them will. By recalculating betweennesses after

the removal of each edge we ensure that at least one of the

remaining edges between two communities will always have

a high value.

C. Interactome networks and sparse graphs

The category of sparse networks includes many remarkable

networks that are extensively used in order to model various

phenomena and systems that are essential in relation to

different layers of life. Essentially, at an informal level, we

can state that a network is sparse when it is featured by a

sensibly smaller number of edges than the theoretical number

of possible edges. The following definition explains precisely

when it can be stated that a network is featured by a sensibly

smaller number of edges [15].

Definition 1. A sparse graph is a graph G = (V,E) for

which the following relation is true: |E| = O(|V |).

For example, let us consider a graph G = (V,E) that has

n nodes. Let us suppose that the out degree of each vertex

in G is equal to a certain constant k. The graph G is a

sparse one because |E| = k|V | = O(|V |). Although the

research activities related to sparse networks do not constitute

an impressively extended array, there is a general agreement

on this formal definition of a sparse network. Nevertheless, the

informal definition is still enough for a good understanding of

the main property of a sparse network and the formal definition

is provided for the sake of the scientific presentation’s clarity.

The sparse nature of the interactome networks has long

been ignored or just scarcely exploited in the most favourable

case. At the same time, none of the existing researches tries

to optimize the betweenness centrality computation making

use of sparse networks shortest path algorithms. In fact, none

of the betweenness research reports this paper makes use of

utilizes the idea of sparse networks.

The IntAct protein database currently contains 56.191

discovered proteins and 188.292 binary interactions. The

number of the theoretically possible number of interactions

is given by the computation of A2
56191, because a protein

network is a directed one, as all proteins can exercise a certain

influence on each other. This reasoning directs us to the

conclusion that the most up to date interactome network could

feature a maximum number of 56190 · 56191 biological links.

Therefore, this interactome network could have a maximum

of 3.157.372.190 biological links. Following our informal

definition, we can say that the actual interactome network

has a sensibly smaller number of nodes than the maximum

theoretically possible one. Also, the same conclusion can be

easily inferred using the formal Definition 1. In the case of

the existing interactome network, k ≈ 3, E = 188.292 and

V = 56.191. Therefore, |E| ≈ k · |V | = O(|V |), and hence

the conclusion.

Corollary 1. The interactome of any living organism

constitutes a network that is sparse.

The reasoning above proves that interactome networks are

sparse and, as a consequence, any betweenness computation

algorithm should be specially designed to perform optimally

on these remarkable networks.

The last paragraph will further enforce the idea that existing

protein databases suggest interactome networks are sparse.

Apart from IntAct, some other research groups maintain

similar databases that contain proteomic data. Database of

Interacting Proteins (DIP) [17] contains information about

20728 proteins and 57684 biological links established between

them. Also, the Human Protein Reference Database [18] holds

information about 25661 proteins and 38167 biological links.

Although it can be noticed there are quantitative differences

among various biological databases, the order of measure

remains always the same. As a consequence, this empirical

information comes to further sustain the idea of sparsity in

relation to interactome networks.

III. BETWEENNESS COMPUTATION IN SPARSE GRAPHS

A. Shortest path algorithms and betweenness

Betweenness centrality relies on the shortest paths com-

putation. A directed graph G=(V,E) consists of a set V of

vertices (proteins for our purposes) and a set E ⊆ V × V

of directed edges (physiological links, in our case). For this

paper’s purposes, undirected graphs are equivalently replaced

by symmetric directed graphs containing two oppositely di-

rected edges for each undirected edge. Unless explicitly stated

otherwise, we shall therefore refer to graphs, edges, when we

mean directed graphs, directed edges, etc. Also, it may be

safely assumed that there are no loops, i.e. edges connecting a

vertex with itself, because they have no influence on between-

ness. A path from a source s from V to a target t from V is

an alternating sequence of vertices and edges, starting with s

and ending with t. The length of a path (s, t) is the number

of edges it contains and the distance from s to t is defined as

the minimum length of all the paths connecting s to t. Note

that s = t implies that dist(s, t) = 0.

Denote by σ(s, t) the number of shortest (s,t)-paths, and let

σst(v) be the number of shortest (s,t)-paths passing through

some vertex v, other than s,t. If s=t, then σst(v) = 1 and, if

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:4, 2009

1138

v ∈ (s, t) then let σst(v) = 0. Then, the betweenness CB(v)
of a vertex v from V is defined to be:

CB(v) =
∑

s,t∈V

σst(v)
σst

where 0
0 = 0 by convention. The measure is therefore

usually interpreted as the degree to which a vertex has control

over pair-wise connections between other vertices, based on

the assumption that the importance of connections is equally

divided among all shortest paths for each pair. As pointed

out already in Freeman [20], the definition of betweenness

applies to disconnected graphs without modification. Though

the distance between two vertices not connected by a directed

path is undefined, this also means that the number of shortest

paths between them is zero, so that the resulting zero contribu-

tion is exactly what is desired. The betweenness computation

algorithms we implemented are based on this strategy.

It doesn’t matter what is the shortest paths algorithm being

used to compute the betweenness centrality measure, the

general structure of the algorithm is described in Figure 1.

We note that by finding all-pairs shortest paths using Breadth-

First Search (BFS) starting from each vertex in the graph, the

edge betweenness value can be obtained by summing pair-

dependencies [13] over all the traversals. The pair-dependency

is defined as δst(v) = σst(v)
σst

, where σst denotes the number

of shortest paths from s ∈ V to t ∈ V and σst(v) is the

number of shortest paths from s to t that go through v. Pair-

dependencies calculated from each BFS for every vertex in the

graph are additive. Summations from all traversals will give us

the overall vertex betweenness, from which edge betweenness

can be obtained by a trivial generalization. Since BFS can

be performed independently and simultaneously from each

vertex in the graph, the calculation required at each iteration

for finding the edge with the highest betweenness value can

be done by parallelizing all-pairs shortest paths or by simply

utilizing a suitable sequential algorithm.

The pseudo code presented in Figure 1 suggests that the

main step of a typical betweenness computation algorithm

is represented by the computation of the distance matrix

associated to each particular network being processed. Once

the distance matrix is computed, the betweenness value for

each node can be computed after determining σuv(node)
and σuv . The former is calculated by making use of the

Bellman’s lemma, which states that a vertex v belongs to

a shortest path between two other vertices x and y if and

only if d(x, y) = d(x, v) + d(v, y). Here, d represents the

distance matrix. In order to compute σuv , we make use of the

algebraic counting technique. Therefore, given the distance p

of the shortest path between a pair of vertices, we just need

to raise the adjacency matrix to the power p. Thus, the value

of any element in the resulting matrix represents exactly the

number of the shortest paths between those particular vertices.

We used three shortest path algorithms in order to optimize

our betweenness computation techniques, the Pettie algorithm,

the Ramalingam-Reps algorithm and the Wagner algorithm.

They all compute, as it would be expected from a dedicated

shortest path algorithm, the distance matrix, but strictly more

efficient than Johnson’s algorithm does. The Johnson’s algo-

Fig. 1. The faster betweenness calculation technique

rithm has long been thought of as the most efficient shortest

path algorithm for sparse graphs. Our research involved an

extensive comparative testing of the Johnson’s algorithm and,

hence, we can acknowledge its efficient behaviour in practice.

Nevertheless, it is outperformed by all three algorithms that

were used for optimizing the betweenness computation. Essen-

tially, the novel betweenness computation technique respects

the following general structure, regardless of the shortest path

algorithm (Pettie, Ramalingam-Reps, Wagner) being used.

The essential part of the algorithm is constituted by the

call of the method that performs the computation of the

distance matrix in line 1. It is also the section of the

code that determines the overall complexity of the algo-

rithm. The Pettie-based version of our optimization technique

is the most resource-consuming one, with a complexity of

O(mn + n2 log log n), which is strictly faster than Johnson’s

and Dijkstra’s algorithms. Hence, the optimized betweenness

computation scheme has a square order complexity in the

worst case that makes it more efficient than any other previous

betweenness computation algorithm applied on large sparse

graphs.

The values that the distance matrix contains after the sub-

routine called in line 1 is executed, are essential for the

computation of σst(v) and σst. The pseudo-code in Figure

2 summarizes the computation of these parameters.

B. Remarks on a sparse shortest path algorithm

The Wagner algorithm is one of the theoretical constructs

used to create a flavour of the optimization technique. Al-

though it didn’t produce the best execution times, it will

be briefly described because it features a clear and easy to

understand structure.

The algorithm is based on a modified version of Dijkstra’s

algorithm. The goal of Dijkstra’s algorithm with pruning is

to decrease the number of visited nodes, the search space,

by visiting only a subset of the neighbours. The algorithm is

outlined in Figure 3.

The execution of the algorithm generates in an efficient

manner the distance matrix of the analyzed interactome net-

work. Considering the algorithm described in Figure 2, the

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:4, 2009

1139

Fig. 2. Computation of σst(v) and σst

Fig. 3. The Wagner shortest path algorithm

subroutine is called in line 1. Thus, the overall betweenness

computation time is significantly reduced.

The previous stage of the research [19] proved the per-

formance of the Brandes algorithm can be improved using

a betweenness computation algorithm that is based on a

Dijkstra-generic computation scheme. This paper describes a

further and significant improvement of the previous compu-

tation scheme. The reasoning that generated the idea of the

optimization is based on the very important empirical remark

that interactome networks are sparse. Therefore, three novel

betweenness computation algorithms for sparse networks were

created. In the next section, the behaviour of the optimized

computation scheme will be assessed on some real biological

data.

IV. EVALUATION OF THE NOVEL SCHEME

A. Description of the datasets

We have extensively tested the suitability of the novel

betweenness computation scheme. The optimization technique

was implemented using the C language and the gcc compiler

under CentOS. The machine is a dual processor Opteron

clocked at 2.5 GHz with 4 GB of RAM. Also, portions of

the Leonardo library were used [16]. We made use of real bi-

ological data that is part of the IntAct database [15]. Currently,

IntAct holds information about 56.191 proteins and 188.292

biological links. In order to test our computation technique, we

extracted seven datasets from the IntAct database. All these

subsets consist of functionally-related clusters of proteins. In

order to create the functionally-related subsets, we used a

partitioning algorithm that we created, which is based on

the Newman-Girvan edge betweenness computation algorithm.

The description of this algorithm will not be provided, as

it is beyond the scope of this paper. We used the same

subsets that provided the data for the testing process that

finalized the previous stage of our research, in order to ensure

a perfect comparative analysis of the efficiency of the two

methods. Essentially, the datasets feature the following number

of proteins and biological links: 1000 (1207), 2000 (4823),

2500 (5692), 3000 (6209), 7000 (14175), 8000 (21304), 9000

(35892). All datasets define interactome networks that obey

both the informal and formal definition of sparse networks

that we provided in Section II, C and, consequently, they are

sparse networks.

B. The execution times

Prior to commenting on the new computation scheme’s

performance, we shall present the execution times that we

obtained after running the three algorithms on the above

described datasets. The results are summarized in Table I and

Table II, which are shown on the next page. The results are

given in milliseconds.

The first table contains execution times resulted after all the

three flavours of the novel betweenness computation technique

were run on all seven datasets. We recall that the shortest path

algorithms that we used belong to Ramalingam-Reps, Pettie

and Wagner. The best performer proved to be the flavour of

the optimization technique that is based on the Ramalingam-

Reps shortest path algorithm. Nevertheless, all three flavours

perform very well in terms of execution times. Practically,

we managed to improve our own computation technique that

is based on the Dijkstra-generic algorithm which, at its turn,

improved the Brandes’ algorithm performance. Compared to

the previous version of the betweenness computation technique

[19], it can be noticed a performance gain of approximately

70% in the case of the largest dataset used. Considering the

fact that no interactome database is ever processed exhaus-

tively, the performances of this novel sequential computation

technique make us conclude that it can be used to analyze

the data recorded in any medium to large biological dataset.

This is an important achievement, as any existing sequential

betweenness computation algorithm is only suitable for ana-

lyzing small to medium-sized datasets. The graph in Figure

4 is generated using the already presented experimental data,

and it further enhances the idea of geometric speedup that the

new betweenness computation technique provides.

The graph shows in a suggestive manner how the new

betweenness optimization technique considered in all three

flavours (the blue, pink and yellow lines) behaves in practice.

The Brandes based computation performs well only for rel-

atively small datasets. The previous optimization technique,

which is based on the Dijkstra shortest path algorithm (the

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:4, 2009

1140

Fig. 4. The geometric speedup of the new computation technique

TABLE I
COMPARATIVE VIEW OF THE EXECUTION TIMES (1)

Test no. Reps-based Pettie-based Wagner-based

1 1410 2010 1890

2 11770 13030 12290

3 22580 28060 25930

4 137250 183740 173960

5 1235520 1734970 1604260

6 2974100 3473260 3101420

7 4223710 3984260 3663380

cyan line) [19] brings an important speedup for the be-

tweenness computation and the growth of the execution time

becomes sensibly less abrupt. Nevertheless, the new technique

proves its superior efficiency in all its three flavours (the blue,

pink and yellow lines) and the execution time growth pattern

suggests that it can be successfully used to process fairly

large biological datasets. Up to now, a similar speedup on

interactome networks has been achieved only by using parallel

computation methods.

The already gathered experimental information can be

summed up into the following conclusions:

• The new betweenness computation scheme improves on

our previous computation technique for interactome net-

works [19] which, at its turn, improved on the speed of

the Brandes-based betweenness computation (the purple

line in the graph) [13]

• We tested and confirmed our initial assumption that a

shortest path algorithm for sparse networks is likely to

speedup betweenness computation for interactome net-

works

• Although the Brandes algorithm remains a milestone for

every researcher interested in betweenness computation,

it is outperformed by the new computation technique in

the case of large sparse biological networks

C. Conclusions and future developments

This paper proposed a sensibly improved technique for an-

alyzing the interactome networks by computing the between-

ness centrality for all proteins in a certain interactome network.

The initial assumption that generated the novel computational

model was related to the fact that interactome networks

are sparse and, hence, a betweenness computation algorithm

specially designed for sparse networks should perform better

TABLE II
COMPARATIVE VIEW OF THE EXECUTION TIMES (2)

Test no. Dijkstra-generic Brandes

1 74793 25782

2 597386 213721

3 1007235 394070

4 1763815 679694

5 5023491 8627049

6 5526159 9723802

7 7431206 12024317

on protein networks than a generic betweenness algorithm. The

initial hypothesis was confirmed and the results of the testing

procedure were presented and commented in the previous sec-

tion. The performance gain is significant, as the computation

time reduces by 70% in the case of a 9000-protein network,

and even more for smaller datasets. The future of biological

networks analysis using sequential betweenness computation

algorithms looks very promising, as sensibly larger portions of

the whole interactome can be analyzed faster than ever before.

The future work will concentrate towards finding better, more

efficient sequential algorithms as well as towards the discovery

and implementation of some parallel algorithms for computing

the betweenness centrality measure and, thus, analyzing the

available proteomic data.

ACKNOWLEDGMENT

This work is supported by the Irish Research Council

for Science, Engineering and Technology, under the Embark

Initiative program.

REFERENCES

[1] R. Dunn et al., The use of node-clustering to investigate biological

function in protein interaction networks. BMC Bioinformatics, 2004.
[2] D. Bader et al., Approximating betweenness centrality. Georgia Institute

of Technology, 2007.
[3] D. Meunier and H. Paugam-Moisy, Cluster detection algorithm in neural

networks. Institute for cognitive science, BRON, France, 2006.
[4] J. Yoon, A. Blumer and K. Lee, An algorithm for modularity analysis

of directed and weighted biological networks based on edge-betweenness

centrality. Bioinformatics, 2006.
[5] M.E.J. Newman, Shortest paths, weighted networks, and centrality. Phys-

ical review, volume 64, 2001.
[6] M. Girvan and M.E.J. Newman, Community structure in social and

biological networks. State University of New Jersey, 2002.
[7] P. Holme et al., Subnetwork hierarchies of biochemical pathways. Bioin-

formatics, 2003.
[8] D. Ucar et al., Improving functional fodularity in protein-protein interac-

tions graphs using hub-induced subgraphs. Ohio State University, 2007.
[9] K. Lehmann and M. Kaufmann, Decentralized algorithms for evaluating

centrality in complex networks. IEEE, 2002.
[10] J. Griebsch et al., A fast algorithm for the iterative calculation of

betweenness centrality. Technical University of Munchen, 2004.
[11] G.H. Traver et al., How complete are current yeast and human protein-

interaction networks?. Genome biology, 2006.
[12] R. Bunescu et al., Consolidating the set of known human protein-

protein interactions in preparation for large-scale mapping of the human

interactome. Genome biology, 2005.
[13] U. Brandes, A faster algorithm for betweenness centrality. University of

Konstanz, 2001.
[14] B. Preiss, Data structures and algorithms with object-oriented design

patterns in C++. John Wiley and sons, 1998.
[15] EMBL-EBI, The IntAct protein interactions database. URL:

http://www.ebi.ac.uk/intact/site/index.jsf, 2009.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:4, 2009

1141

[16] C. Demetrescu et al., The Leonardo Library. URL: http://www.leonardo-
vm.org/, 2003.

[17] University of California, The DIP protein interactions database. URL:
http://dip.doe-mbi.ucla.edu/, 2009.

[18] Johns Hopkins University, The HPRD protein interactions database.
URL: http://www.hprd.org/, 2009.

[19] R. Bocu and S. Tabirca, Betweenness Centrality Computation - A New

Way for Analyzing the Biological Systems. Proceedings of the BSB 2009
conference, Leipzig, Germany, 2009.

[20] L.C. Freeman, A set of measures of centrality based on betweenness.
Sociometry, Vol. 40, 35-41, 1977.

