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Abstract—The primary objective of this paper was to construct a
“kinematic parameter-independent modeling of three-axis machine
tools for geometric error measurement” technique. Improving the
accuracy of the geometric error for three-axis machine tools is one of
the machine tools’ core techniques. This paper first applied the
traditional method of HTM to deduce the geometric error model for
three-axis machine tools. This geometric error model was related to the
three-axis kinematic parameters where the overall errors was relative
to the machine reference coordinate system. Given that the
measurement of the linear axis in this model should be on the ideal
motion axis, there were practical difficulties. Through a measurement
method consolidating translational errors and rotational errors in the
geometric error model, we simplified the three-axis geometric error
model to a kinematic parameter-independent model. Finally, based on
the new measurement method corresponding to this error model, we
established a truly practical and more accurate error measuring
technique for three-axis machine tools.

Keywords—Three-axis machine tool, Geometric error, HTM,
Error measuring

I. INTRODUCTION

NHANCING the accuracy of CNC machine tools is an
important task in the area of machine tools. Errors which

influence a machine tool’s accuracy primarily originate from
three categories: structurally-induced errors, driver-induced
errors, and quasi-static errors. According to relevant research
reports, quasi-static errors account for 70% of volume errors in
CNC machine tools.  This kind of error includes both geometric
and thermal errors.

This paper researched geometric errors in quasi-static errors.
The technique of building machine tool’s geometric error model
is well developed in the past few years [1]–[5]. The error model
describes the position and orientation errors of tool relative to
workpiece at specific machine position, whereby inaccurate
influential factors come from kinematic link parameters and
individual error sources. It is well known that the inaccurate
motion of a linearly driven axis is associated with six motional
errors, including one linear error, two straightness errors, and
three rotational errors. With modern measurement devices such
as the 6D laser interferometer [6], all six motional errors of the
linearly driven axis can be measured rapidly. Based on the error
model, the accuracy of three-axis machine tools can be
dramatically improved through the error compensation [7]-[8].

Since 2008 a total volumetric compensation by Siemens for
the controller 840 D and Heidenhain  iTNC 530 in 2009. These
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functions allow for increasing the accuracy of machining
centers if the volumetric errors were initially determined using
suitable measuring technology. With the LaserTRACER [9]
offers an efficient and high-precision measurement system for
volumetric calibration.

Currently, geometric error modeling depends on the
three-axis machine kinematic chain to create a geometric error
model of three-axis machine tools, and the home position for
which each motion axis is regarded as the motion axis’s
reference coordinate system. For this reason kinematic
parameters between the coordinate systems for the linear axes
and the rotary axes are needed to effective describe their
relationship of motion. However, the ideal motion axis line and
the center of revolution of the linear motion slide is difficult to
define precisely, and therefore the kinematic parameter value
cannot be defined. Furthermore, the fact that geometric errors
defined on the ideal axis line of the linear motion slide must be
measured by placing the measurement device on this axis line to
avoid Abbe’s error creates practical measuring difficulties when
the linear motion slide is at a high position or when there is
interference. The overall errors on the tool end in the geometric
error model with kinematic parameters constructed based on the
machine reference coordinate system. In actual machining,
however, a certain point on the workpiece will be set as the
origin of the workpiece coordinate system, which will be the
error-free position. The errors will then correspond to this point
rather than corresponding to the machine reference coordinate
system.

For this reason, current errors modeling methods face the
following three practical issues:
(1) The kinematic parameters in the model are unable to be

accurately obtained.
(2) Avoiding causing the Abbe error during geometric error

measurement creates practical operational difficulties with
the applied measuring device.

(3) The largest problem with using traditional modeling and
measurement methods is that the error model includes
kinematic parameters which have a bearing on the
contribution of rotational errors to overall errors: rotational
errors measuring inaccuracy will magnify uncertainty of
machine tools accuracy with overall errors, thus increasing
the uncertainty in the error model.

Therefore it is necessary to establish a new modeling,
measurement method for geometric errors of three-axis machine
tools, which is more practical, convenient and accurate.
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II.DEFINING GEOMETRIC ERRORS FOR LINEAR AXES

Definitions in ISO230 related to error inspection standards
for CNC machine tools include the definition for geometric
errors and the method for test. A single linear motion axis is
defined to possess six component errors(three translational
errors and three rotational errors), and a location
(perpendicularity) error exists between two linear motion axes.
According to the above definitions, a three-axis machine tool
with three linear axes would have a total of 21 geometric errors.
To describe three-axis machine tool geometric overall errors, it

is necessary to establish a geometric error model for the target
machine. Assuming the structure of the machine tool is a rigid
body, then a 4x4 HTM could be used to show the relationship
between each kinematic and servo control axis, and the machine
error model could go through an individual kinematic and driver
components HTM to obtain the order of products, depending on
the machine kinematic chain [1].

Fig. 1 displays a case study for the X-axis linear motion slide.
The geometric error model for kinematic parameters, location
errors, and component errors in X-axis linear slide, showing the
relationship of the x coordinate system with respect to the

reference coordinate system x
rT , is shown in the formula below.
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where xxx ZYX ,, are the constant offset which the x home

position with respect to the reference coordinate system in the
x,y,z direction respectively, or the kinematic parameter for
X-axes linear slide. COX is the location error between linear X
axis and an ideal linear axis (in this example, Y-axis of the
reference coordinate system) which will cause a small angular
rotation at between two coordinate systems at the Z axial
direction. EXX, EYX, EZX, EAX, EBX and ECX are the six

component errors for linear X axis, and mX is the

servo-controlled position of the X-axis slide.
The order of products for the kinematic parameter matrix, the

location (perpendicularity) error matrix, and the 6D component
error matrix in the above formula is dependent upon the pattern
arrangement in linear X axis’s kinematic chain. First the 6D
component errors matrix for the X axis linear slide. And
assuming that when the X-axis slide goes home position the
Z-axis of the X coordinate system is identical with the Z-axis of
the reference coordinate system, then perpendicular error COX
exists between the ideal motion axis (the X-axis of the X
coordinate system) and the Y-axis of the reference coordinate
system, and so does the perpendicularity error matrix. When X
axis slide moves to the X home position, the X axis slide having
the kinematic parameter matrix for the origin coordinate offsets.

Fig. 1 X linear axis geometric error definition

III. MODELING AND MEASUREMENT WITH KINEMATIC

PARAMETER-INDEPENDENCE

A. Geometric Error Modeling

For an ideal three-axis machine tool, each tool position

( www ZYX ,, ) and orientation ( www KJI ,, ) on the workpiece

coordinate system for the three machine motion axes has a
corresponding drive position to cut the needed work pieces and
the tool orientation can only be defined on the (0,0,1) direction.
Fig. 2 is the three-axis machine tool (Coordinate Measuring
Machine, CMM) and its coordinating system definition. The
machine’s kinematic chain is linked by several link components
and three linear motion axes. One end of the chain is a tool
holder and the holder should hold the tool. The spindle block is
mounted on the Z-slide. The Z-slide moves vertically with a
prismatic joint. The Z-slide is bolted on the X-slide and the
X-slide is then stacked on the Y-slide, making the three linear
axes (x,y,z) perpendicular to each other. Y-slide is then moves
on the beds with a prismatic joint. Finally, based on the ISO230
definition and this machine’s kinematic chain sequence, the
location errors are COX, BOZ, and AOZ.

Based on Fig. 3, the relationship of the tool (T) coordinate

system with respect to the holder (H) coordinate system, t
hT , is

shown in the below.
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where tZ  is the length of the tool (probe).

The holder coordinate system with respect to the Z coordinate

system, h
zT , is expressed in the formula below.
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where hZ is the Z directional offset of the holder origin in

relation to the origin of the Z axis coordinate system.
The Z axis coordinate system with respect to X axis

coordinate system, z
x T , is express in the formula below.
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where zzz ZYX ,, are the offsets for Z home position in relation

to X home position. AOZ and BOZ are location (perpendicular)
errors for Z linear motion axis in relation to Y and X axis,
respectively. EXZ, EYZ, EZZ, EAZ, EBZ and ECZ are the six

component errors for Z linear axis, and mZ is the

servo-controlled position of the Z servo-axis.
The X axis coordinate system with respect to the Y

coordinate system, x
yT , is expressed in the formula below.
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where xxx ZYX ,,  are offsets for X home position in relation to

Y home position. COX is the location (perpendicular) error for
X linear motion axis in relation to Y axis. EXX, EYX, EZX, EAX,
EBX and ECX are the six component errors for X linear axis,

and mX is the servo-controlled position of the X servo-axis.

The Y axis coordinate system with respect to the reference

coordinate system, y
rT , is expressed in the formula below.
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where EXY, EYY, EZY, EAY, EBY and ECY are the six

component errors for Y linear axis, and mY is the

servo-controlled position of the Y servo-axis. In the above
equation, the Y linear motion axis 6D error matrix follows the
errors created by the ideal axis movement. In the process of
deducing the entire error model, assuming that when Y motion
axis goes to the Y home position the Y coordinate system is
identical to the reference coordinate system, then the ideal axis
line should also be identical to the Y-axis in the reference

coordinate system and no perpendicular error exists between the
Y coordinate system and the reference coordinate system.

Deducing another kinematic chain, Fig. 3 indicates that the
end of the three-axis machine tool aligns with the end of the
workpiece. For this reason, the workpiece coordinate system is
defined on the end of the machine tool and the workpiece
coordinate system (w) with respect to the workpiece origin

coordinate system, w
woT  is expressed in the formula below.
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where www ZYX ,, is the translational offset for the workpiece

coordinate system (w) in respect to the workpiece origin
coordinate system (wo), which can be accurately defined
through measurement tools.

The workpiece origin coordinate system (wo) with respect to

the reference coordinate system (r), wo
rT , without geometric

errors is expressed in the formula below.
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where woX , woY and woZ are the translational offset for the

workpiece origin coordinate system (w) in respect to reference
coordinate system (r).

For this reason, the spatial relationship between the tool
coordinate system and the reference coordinate system can be
obtained through the formula below.
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The spatial relationship between the workpiece coordinate
system and the reference coordinate system can be obtained
through the formula below.

w
wo

wo
r

w
r TTT (10)

Fig. 3 illustrates that, when it is an ideal machine, the tool
coordinate system should be an identical point with the
workpiece coordinate system. However, actual machines have
geometric errors, so the position of the origin of the tool
coordinate system with respect to the reference coordinate
system ttt ZYXtP , can be obtained through the formula

below.
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Fig. 2 Three-axis machine tools

Fig. 3 Overall errors of the tool end

T
t

rT T 1000]1[ tP (11)

The position of the origin of the workpiece coordinate system
with respect to the reference coordinate system

www ZYXwP , can be obtained through the formula

below.
T

w
rT T 1000]1[ wP (12)

Now, the position error for the tool coordinate system with
respect to the workpiece coordinate system in the reference
coordinate system ),,( rrr ZYXre,P can be obtained

through the formula below.

wtre, PPP (13)

The orientation error in the reference coordinate system
),,( rrr KJIre,O  can be obtained through the three

formulas listed below.
T
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where idealw
rT ,  and idealt

rT ,  are the HTM for the workpiece

coordinate system and tool coordinate system with respect,
individually, to the reference coordinate system for

w
rT and t

rT , respectively, when geometric errors are not

considered (the ideal machine).

Using small-angle approximations assumption and the
second-order errors are negligible, and consolidating the
geometric errors, the geometric error model for this three-axis
machine tool is displayed in Table I. The overall error for the
direction of X, rX , is the product of each error multiplied by

each error’s error gain. For example, the error contribution for
the direction of X in ECX is –ECX* zY . This table, which is

considered a geometric error sensitivity analysis table, indicates
that linear errors (EXX, EYX, EZX, EXY, EYY, EZY, EXZ, EYZ,
and EZZ) are machine kinematic parameter-independent, while
rotary errors (EAX, EBX, ECX, EAY, EBY, ECY, EAZ, EBZ,
ECZ, COX, AOZ, and BOZ) are machine kinematic
parameter-dependent.

TABLE I
ERROR MODEL AND SENSITIVITY AND ANALYSIS

Error Xr Yr Zr Ir Jr Kr

EXX 1 0 0 0 0 0
EYX 0 1 0 0 0 0
EZX 0 0 1 0 0 0
EAX 0 -Zh-Zt-Zm-Zz +Yz 0 -1 0
EBX +Zh+Zt

+Zm+Zz

0 -Xz 1 0 0

ECX -Yz +Xz 0 0 0 0
EXY 1 0 0 0 0 0
EYY 0 1 0 0 0 0
EZY 0 0 1 0 0 0
EAY 0 -Zh-Zt

-Zm-Zz-Zx

+Yz+Yx 0 -1 0

EBY +Zh+Zt+Zm

+Zz+Zx

0 -Xz-Xm

-Xx

1 0 0

ECY -Yz +Xz+Xm

+Xx

0 0 0 0

EXZ 1 0 0 0 0 0
EYZ 0 1 0 0 0 0
EZZ 0 0 1 0 0 0
EAZ 0 -Zh-Zt 0 0 -1 0
EBZ +Zh+Zt 0 0 1 0 0
ECZ 0 0 0 0 0 0
COX -Yz +Xz+Xm 0 0 0 0
AOZ 0 -Zh-Zt-Zm 0 0 -1 0
BOZ +Zh+Zt+Zm 0 0 1 0 0

B. Measurement for Kinematic Parameter-independent

In defining geometric errors and deducing formulas above,
the three-axis machine tool linear axis was structured by
kinematic stacking and each motion axis had a home position.
For this reason, kinematic parameters were necessary between
linear axis coordinate systems to effectively describe their
movement relative to each other. However, in practice, the
position of the ideal motion axis line for the linear motion slide
was difficult to clearly define. Moreover, to avoid Abbe’s error,
the measurement device must be placed on this axis line when
measuring. This requirement creates practical measurement
difficulties if the linear motion slide is at a high position or there
is interference. For this reason, it is necessary to establish a new
measurement method for a geometric error model without
kinematic parameter.

Ideally, the geometric error model coordinate system should
be set up on the ideal motion axis line for the linear slide to
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effectively describe the spatial errors caused by Abbe’s error.
For example, measurement of the Y linear slide, displayed in
Fig. 5, had three translational errors (EXY, EYY and EZY) and
three rotational errors (EAY, EBY and ECY). If, when measuring
geometric errors, directions x,y,z between measurement axis
line (M) and ideal motion axis line (I) each have offset Lx, Ly, Lz,
then the 6D component error model for the measurement
construction method and the results of the measurement are:

EXY'=EXY+Lx*(1-cos(EBY))+Lx*(1-cos(ECY))+Ly*sin(ECY)
+Lz*sin(EBY) (17)

EYY'=EYY+Lx*sin(ECY)+Ly*(1-cos(EAY))+Ly*(1-cos(ECY))
+Lz*sin(EAY) (18)

EZY'=EZY+Lx*sin(EBY)+Ly*sin(EAY)+Lz*(1-cos(EAY))
+Lz*(1-cos(EBY)) (19)

EAY'=EAY (20)
EBY'=EBY (21)
ECY'=ECY (22)

When the rotational error slightly angled, then cos(EAY)

1, cos(EBY) 1, cos(ECY) 1, and sin(EAY) EAY,

sin(EBY) EBY, sin(ECY) ECY. These three formulas can

be simplified to:

EXY' EXY+Ly*ECY+Lz*EBY (23)

EYY' EYY+Lx*ECY+Lz*EAY (24)

EZY' EZY+Lx*EBY+Ly*EAY (25)

Fig. 4 Linear axis geometric error measuring method

As the above explanation indicates, when measuring
rotational errors (EAY, EBY and ECY), the measuring line is
independent of the position of the motion line so it is not
necessary for the measuring device to be stacked on the ideal
motion line (I). When measuring translational errors (EXY, EYY
and EZY) however, the measurement position matters and
therefore, the measurement device must be placed on the ideal
motion line (I). If it is placed on line M from Fig. 5, then the
spatial errors created by the rotational errors will be included

with translational errors. Besides its own translational errors,
the translational errors discovered by this method of
measurement construction will also include errors which were
created due to rotational errors. For this reason, the translational
error measurement results obtained by this measurement
method described above include the influence of rotational
errors on the measurements. This result is explained in
(23)-(25).

Additionally, when constructing this geometric error
measuring, the kinematic parameter for Lx, Ly and Lz has a
constant value. When the linear motion axis moves to a position,
the spatial errors created by the rotational errors at that position
(EAY, EBY, and ECY) will each be entered into the translational
errors (EXY, EYY, and EZY) and the measuring line for this
measurement device can be considered the ideal motion line for
the linear motion axis, meaning rotational errors have no spatial
errors for any position on this measuring line. Since the error
gain of rotational errors is 0, the measuring position is the initial
error position for rotational errors. Furthermore, in actual
cutting and measuring, a certain position on the workpiece will
be established as the origin of the workpiece coordinate system.
Set up as an error-free position, all work position errors are no
longer errors with respect to the geometric error model
constructed by the machine ideal motion line but errors with
respect to this point. For this reason, this measuring method has
practical application value.

C.Error Model with Measurement Method

Using API 6D laser interferometer instrument as an example
of applying the methods and principles of the measuring method
described above to three-axis machine tools, we installed a
reflect mirror to the tool holder on the spindle of the machine in
Fig. 2 to individually measure the six component errors in a
linear motion axis and the location (perpendicular) error for the
three linear axes. When, for example, the 6D component errors
were measured for Y linear motion axis, we first returned X, Y,
and Z axes to their individual home positions, which were set as
the zero error position, and then installed a reflect mirror to the
tool holder on the machine’s spindle to carry out measurements.
At this point, because the measuring device’s measurement
position would react with Abbe’s error, the Y axis 6D
measurement results included all the errors created by the
machine’s kinematic parameter. Next, we measured the
component and location (perpendicular) errors for the other two
linear motion axes according to the principles described in the
last section.

Applying the new measuring method to the three-axis CNC
machine tool, we could simplify the original geometric error
model containing kinematic parameters shown in Table I to the
kinematic parameter-independent Table II. Considering, for
instance, measuring the six component errors in X linear motion
axis, there were three error contributions (EZX, EAX and EBX)
to the tool end’s overall errors, the contributing factors of which

were 1, zz XY , . Under the premise that the machine possesses
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positioning repeatability, we can assume that when X axis slide

is located at a specified position, the zz XY , kinematic

parameter will be a constant. Due to the fact that the reflection
mirror was installed at the tool end of the spindle, the error

contribution of EAX* zY  and EBX* )( zX will be reflected in

EZX. For this reason, these two kinematic parameters can be set
to zero, and their other errors can be simplified in this way.

As Table II illustrates, all nine translational errors (EXX,
EYX, EZX, EXY, EYY, EZY, EXZ, EYZ and EZZ) contribute to
the tool end overall errors, but only five of the rotational errors
(EAX, EBX, EAY, EBY and ECY) contribute while four (ECX,
EAZ, EBZ and ECZ) do not. Therefore, only 17 (21-4)
geometric errors need to be measured in this model.  Also in
Table II, considering the home positions for X, Y and Z motion
axes in this model, the error gains for EAY, EBY, and ECY
require revision to properly express the total physical
significance of kinematic parameter. Xs, Ys, and Zs represent the
stroke for X, Y, and Z linear motion axes, respectively.

TABLE II
ERROR MODEL WITH PARAMETRIC-INDEPENDENT

Error Xr Yr Zr Ir Jr Kr

EXX 1 0 0 0 0 0
EYX 0 1 0 0 0 0
EZX 0 0 1 0 0 0
EAX 0 -Zm 0 0 -1 0
EBX Zm 0 0 1 0 0
ECX 0 0 0 0 0 0
EXY 1 0 0 0 0 0
EYY 0 1 0 0 0 0
EZY 0 0 1 0 0 0
EAY 0 -(Zs+Zm) 0 0 -1 0
EBY Zs+Zm 0 Xs-Xm 1 0 0
ECY 0 -(Xs-Xm) 0 0 0 0
EXZ 1 0 0 0 0 0
EYZ 0 1 0 0 0 0
EZZ 0 0 1 0 0 0
EAZ 0 0 0 0 -1 0
EBZ 0 0 0 1 0 0
ECZ 0 0 0 0 0 0
COX 0 Xm 0 0 0 0
AOZ 0 -Zm 0 0 -1 0
BOZ Zm 0 0 1 0 0

Constructing a kinematic parameter-independent three-axis
geometric error model and measurement method based on the
above measuring method is both practical and accurate.
Furthermore, compensating for persistent geometric errors can
also be facilitated by using this geometric error model to
establish a geometric error compensation model to effectively
compensate for three-axis geometric errors. The three-axis
machine tool geometric error compensation scheme is displayed
in Fig. 5. First, a laser interferometer device based on the above
measurement construction method was used to measure the 21
geometric errors in the three axes. The measurement data was
used to carry out coordinate translational, aligning it with the
error model coordinate system. The measurement results were
then plugged into the three-axis kinematic
parameter-independent error model. The results indicated that

when the three-axis machine tool moved to u(x,y,z) and the tool
end spatial errors are du, then the compensation applied by the
kinematic parameter-independent error compensation model is
–du. Finally, the x,y,z motion axis direction errors,
compensated through a controller, were returned to their ideal

position at cu .

Geometric error data

Measuring device
(ex. API 6D)

Error model of
three-axis machine tools

du=(dx,dy,dz)

Compensation error model
of three-axis machine tools

Machine position after error
compensation with controller

-du

u =u -du

+

Machine axis position
(X,Y,Z)

u=(x,y,z)

c

+

Fig. 5 Three-axis machine tools error compensation scheme

IV. CONCLUSION

The three-axis geometric error models derived by traditional
methods all set the machine reference coordinate system at a
fixed point on the machine’s base and depend on the machine
kinematic chain to derive a machine kinematic
parameter-dependent model. For practical applications, this
dependence makes kinematic parameters impossible to
accurately obtain, measurement device operations inconvenient,
and overall errors overvalued. For this reason, this paper created
a measurement method-integrated “modeling for geometric
error model of three-axis machine tools with kinematic
parameter independent” technique. This technique, which
integrated simple geometric error measuring methods, which
constructed the corresponding three-axis geometric error
model, and whose geometric error model is machine kinematic
parameter-independent, is a practical, convenient, and accurate
integrated three-axis geometric error modeling and
measurement method.
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