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Abstract—This work examines thermal convection in two porous 

layers. Flow in the upper layer is governed by Brinkman’s equations 
model and in the lower layer is governed by Darcy’s model. 
Legendre polynomials are used to obtain numerical solution when the 
lower layer is heated from below. 
 

Keywords—Brinkman's law, Darcy’s law, porous layers, 
Legendre polynomials, the Oberbeck-Boussineq approximation.  

I. INTRODUCTION 
HERMAL instability theory has attracted considerable 
interest and has been recognized as a problem of 

fundamental importance in many fields of fluid dynamics. The 
earliest experiments to demonstrate the onset of thermal 
instability in fluids are those of Bernard’s [1, 2]. Benard 
worked with very thin layers of an incompressible viscous 
fluid standing on a levelled metallic plate maintained at a 
constant temperature. The upper surface was usually free and, 
being in contact with the air, was at a lower temperature. In 
his experiments, Benard deduced that a certain critical adverse 
temperature gradient must be exceeded before instability can 
set in. The instability of a layer of fluid heated from below and 
subjected to Coriolis forces has been studied by 
Chandrasekhar [3, 4] for a stationary and overstability case. 
He showed that the presence of these forces usually has the 
effect of inhibiting the onset of thermal convection. Nield [5] 
considered the onset of salt-finger convection in a porous layer 
.Taunton et al. [6] considered the thermohaline instability and 
salt-finger in a porous medium and solved the boundary value 
problem. Sun [7] was the first to consider such a problem, and 
he used a shooting method to solve the linear stability 
equations. Sun [7] and Nield [8] used Darcy’s law in 
formulating the equations of porous layer. In Darcy’s law of 
motion in porous mediums, the Darcy resistance term took the 
place of the Navier-stokes viscosity term, while in the 
modified Darcy’s law (Brinkman model), suggested by 
Brinkman [9], the Navier- stokes viscosity term still exists. 
Chen & Chen [10] considered the multi-layer problem when 
the above layer is heated and salted from above, and the 
solution of the problem is obtained using a shooting method. 
Lindsay & Ogden [11] worked in the implementation of 
spectral methods resistant to the generation of spurious 
eigenvalues. Lamb [12] used expansion of Chebyshev 
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polynomials to investigate an eigenvalue problem arising from 
a model discussing a finitely conducting inner core of the 
earth on magnetically driven instability. Bukhari [13] studied 
the effects of surface-tension in a layer of conducting fluid 
with an imposed magnetic field and obtained results when the 
free surface is deformable and non-deformable. He solved that 
by using Chebyshev spectral method, and thus obtained some 
different results from that of Chen & Chen [10]. Straughan 
[14] studied the thermal convection in fluid layer overlying a 
porous layer and considered the problem of lower layer heated 
from below and surface tension driven on the free top 
boundary of upper layer. In [15], he also dealt with the same 
problem considering the ratio depth of the relative layer and 
investigated the effect of the variation of relevant fluid and 
porous material properties. Allehiany [16] studied Benard 
convection in a horizontal porous layer permeated by a 
conducting fluid in the presence of magnetic field and coriolis 
forces. Al-Qurashi & Bukhari [17] studied the salt finger 
convection in a horizontal porous layer superposed by a fluid 
layer affected by rotation and vertical linear magnetic field on 
both layers. The solution is obtained using Legendre 
polynomials when the heat and the salt concentration affected 
from above.  

II.  MATH 
Let 1L and 2L be two horizontal porous layers such that the 

top of the layer 2L  touches the bottom of the layer 1L . The 
plane interface between the two layers is ,03 =x  the upper 
boundary of 1L is Bdx =3 and the lower boundary of 2L  is

Ddx −=3 . We suppose that the two layers occupied by a 
porous medium permeated by an incompressible thermally and 
electrically conducting viscous fluid. The fluid flow in the 
porous layer 2L  is governed by Darcy's law, whereas the fluid 
flow in the porous layer 1L  is governed by Brinkman's law. 
Gravity g acts in the negative direction of 3x  (Fig. 1). 
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Fig. 1 Schematic representation of the physical configuration 

 
Convection is driven by temperature dependence of the 

fluid density and damped by viscosity. The Oberbeck-
Boussineq approximation is used as the density of fluid is 
constant everywhere except in the body force term where the 
density is linearly proportional to temperature, i.e 
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the governing equations of the porous layer 1L are 
 

( )[ ]0
2

0

11 TTαgVνV
K
μ

ρ
P

t
V

φ BBB
B

BB

B

−−−∇+−−∇=
∂

∂
 

(2) 

,TkTV
t

T
BBBB

B 2∇=∇+
∂

∂
⋅                            

 
and the governing equations of the porous layer 2L are 
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where mD p,p  are the pressure of the porous layers 1L and 2L  
respectively, BD ,VV  are seepage velocity of the porous layers 

1L and 2L respectively, BD ,TT are the Kelvin temperature of the 
porous layers 1L and 2L respectively, BD ,kk are the thermal and 
overall thermal conductivity of the porous layers 1L and 2L  
respectively, μ is the viscosity, BD ,KK  is the permeability of 

the porous layers 1L and 2L  respectively, BD φφ ,  is its 
porosity of the porous layers 1L and 2L  respectively. 

A. The boundary Conditions 
Suppose that Bdx =3  is rigid and maintained at constant 

temperature uT , and Ddx −=3 is rigid and maintained at 
constant temperature lT , then the boundary conditions can be 
written as:  
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on the upper boundary, and  
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on the lower boundary, where Bw and Dw are the normal axial 
velocity components of the porous layers 1L and 2L  
respectively. The boundary conditions on the interface plane 

03 =x  are based on the assumption that temperature, heat 
flux, normal fluid velocity and normal stress tensor are 
continuous so that 
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Equations (2) and (3) have an equilibriam solution satisfying 
the boundary conditions (4)-( 6) on the form 
 

,VB 0=              ,0D =V  
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  ( ) ,TdT uBB =        ( ) ,T-dT lDD =                                            (8) 
 

and the interface conditions 
 

( ) ( ),TT DB 00 =   ( ) ( ),
x
T

k
x
T

k D
D

B
B 00

33 ∂
∂

=
∂
∂

  ( ) ( ),PP DB 00 =    (9) 

 
the equilibrium temperature field, hydrostatic pressure and salt 
concentration in the fluid layer and porous medium layer are 
respectively: 
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dkdk
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B. The Perturbation Equations 
Suppose that the equilibrium solution be perturbed by 

following linear perturbation quantities: 
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then we may verify that the linearised version of equations (2) 
are 
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and equations (3)  are 
 

,αgθρv
K
μp

t
v

φ
ρ

DD
D

D
D

D
0

0 +−−∇=
∂

∂
 

(13) 
( )

,θk
d

TT
v

t
θ

DD
D

l
D

D 20 ∇=
−

−
∂

∂
 

 
The boundary conditions (4)-(6) become respectively 
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C.  Non-Dimensionalisation 
We now non-dimensionalize the equations (12) and (13) by 

using the transformation 
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for the fluid layer, and using the transformation 
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Thus equations (12) can be written in the form 
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where BBr ,DaP and BRt are non-dimensional numbers denote 
the viscous Prandtl number, Darcy number and thermal 
Rayleigh number of the porous layer 1L  and given by  
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and the equations (13) can be written in the form 
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where Dmr ,DaP and DRt are non-dimensional numbers denote 
viscous Prandtl number, Darcy number and thermal Rayleigh 
number of the porous medium layer 2L and given by: 
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and where 
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We will discuss the problem in case of heating from below, 

so we take 1−=F . Using (15) and (16) in the boundary 
conditions (14) we obtain 
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where TT ,γ,εd̂ and K̂  are given by 
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Note: the (•) superscript has been dropped from equations 

(17)-(19) for simplify. 

D.  Linearisation of Equations 
We take the curl curl of the equations (17)1 and (18)1 to 

eliminate Bp and Dp  respectively and considering the third 
component of the result equations and the equations (17)2 and 
(18)2, we get 
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−∇=∇ is tow-dimensional Laplacian operator 

and ( )224 ∇=∇ . To simple the normal stress boundary 

condition on the interface plane (19)7 by eliminate hydrostatic 
pressure term so taking tow-dimensional Laplacian of (19)7 
we obtain: 
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then we take the divergence of equations (17)1 and (18)1 we 
get respectively 
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Substitute (24) and (25) in (22) we have 
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Now we look for solution of the form 
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equation are: 
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where 22
BBB mna +=  and 22

DDD mna +=  are non-
dimensional wave numbers in the fluid layer and porous 
medium layer respectively, σ  is the grouth rate and 
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The final boundary conditions are:  
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III. NUMERICAL SOLUTION 
A Legender polynomials is applied to solve the equations 

(27) with the relevant boundary conditions (28)-(30), and we 
map [ ]103 ,x ∈  and [ ]013 ,x −∈  in to [ ]11,z −∈  by the 
transformations 12 3 −= xz  and 12 3 += xz  respectively, and 
get  
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Then the equations (27) can be rewritten in a system of 
eighteen ordinary differential equations of first order as 
follows  
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and the boundary conditions are   
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the eigenvalue problem can be reformulated in the form 
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where A and B are real 1010×  matrices.  

IV. RESULTS AND DISCUSSION 
The eigen value problem (27) with boundary conditions 

(28)- (30) by using Legendre polynomials is transformed to a 
system of five ordinary differential equations of first order in 
the porous layer 1L and a system of five ordinary differential 
equations of first order in the porous layer 2L with ten 
boundary conditions. We will find the thermal Rayleigh 
numbers of the porous medium DRt corresponding to the wave 

numbers Da for different values of depth ratio d̂ , permeability 

ratio K̂  and thermal conductivity ratio Tε  as shown in the 
following Figs. 2-9. Therefore, we concluded that: 
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 The deeper the space between the two porous layers is the 
less value the thermal Rayleigh numbers will be, which 
leads to the instability of the fluid. This means that the less 
deep the Darcy, governed porous layer is the more the 
thermal convection, as shown in Fig. 2. 

 The increases of the rate of permeability K̂  helps suppress 
the thermal convection which leads to the stability of the 
fluid. This case becomes clearer when the space between 
two porous layers decreases, as shown in Figs. 3-5. 

 As thermal conductivity ratio Tε increases, the thermal 
Rayleigh number increases. This means that when the 
porous layer governed by Brinkman's model is more 
thermal conductive than the porous layer governed by 
Darcy's model it helps stabilize the fluid. This case 
becomes more clear when the space between two porous 
layers decreases and the rate of permeability increases, as 
shown in Figs. 6-9. 
 

Fig. 2 The relation between Da and DRt for different value of d̂ ,
6104 −×=DDa , 7.0=Tε  and 01.0K̂ =  

 

 
 
 

 

Fig. 3 The relation between Da and DRt for different value of  K̂ ,

14.0ˆ =d , 6104 −×=DDa   and 0.7Tε =  

 
 
 
 

Fig. 4 The relation between Da and DRt for different value of K̂ ,

09.0ˆ =d , 6104 −×=DDa   and 7.0=Tε  
 

 

Fig. 5 The relation between Da and DRt for different value of K̂ ,

08.0ˆ =d , 6104 −×=DDa   and 7.0=Tε  

Fig. 6 The relation between Da and DRt for different value of Tε ,

0.01K̂ = , 14.0ˆ =d and 6104 −×=DDa  
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Fig. 7 The relation between Da and DRt for different value of Tε ,

0.01K̂ = , 2.0ˆ =d and 6104 −×=DDa   

 

 
Fig. 8 The relation between Da and DRt for different value of Tε ,

0.001K̂ = , 14.0ˆ =d and 6104 −×=DDa   

 

 

Fig. 9 The relation between Da and DRt for different value of Tε ,

0.02K̂ = , 14.0ˆ =d and 6104 −×=DDa  . 
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