Two New Collineations of some Moufang-Klingenberg Planes

Atilla Akpinar and Basri Çelik

Abstract

In this paper we are interested in Moufang-Klingenberg planes $\mathbf{M}(\mathcal{A})$ defined over a local alternative ring \mathcal{A} of dual numbers. We introduce two new collineations of $\mathbf{M}(\mathcal{A})$.

Keywords-Moufang-Klingenberg planes, local alternative ring, projective collineation.

I. Introduction

The number of collineations of any projective plane is huge. For example; the Fano plane has 168 collineations, the nonDesarguesian projective Veblen-Wedderburn plane of order 9 (which is denoted by $\pi_{N}(9)$) has 311,040 collineations [8, p. 366]. It is easy to see that the composite of any two collineations is a collineation, as the invers of any collineation. Function composition is always associative; thus the collineations of any projective or affine plane form a group. For more detailed information about these groups, the reader is referred to the books of [5], [8].

In this paper we deal with the class (which we will denote by $\mathbf{M}(\mathcal{A})$) of Moufang-Klingenberg (MK) planes coordinatized by a local alternative ring $\mathcal{A}:=\mathbf{A}(\varepsilon)=\mathbf{A}+\mathbf{A} \varepsilon$ (an alternative field $\mathbf{A}, \varepsilon \notin \mathbf{A}$ and $\varepsilon^{2}=0$) introduced by Blunck in [3]. We will introduce two collineations of $\mathbf{M}(\mathcal{A})$, different from the collineations given in [4].

The paper is organized as follows. Section 2 includes some basic definitions and results from the literature. In Section 3 we will give two transformations of $\mathbf{M}(\mathcal{A})$ and show that the transformations are collineations $\mathbf{M}(\mathcal{A})$.

II. Preliminaries

Let $\mathbf{M}=(\mathbf{P}, \mathbf{L}, \in, \sim)$ consist of an incidence structure $(\mathbf{P}, \mathbf{L}, \in)$ (points, lines, incidence) and an equivalence relation ' \sim ' (neighbour relation) on \mathbf{P} and on \mathbf{L}, respectively. Then M is called a projective Klingenberg plane (PK-plane), if it satisfies the following axioms:
(PK1) If P, Q are non-neighbour points, then there is a unique line $P Q$ through P and Q.
(PK2) If g, h are non-neighbour lines, then there is a unique point $g \cap h$ on both g and h.
(PK3) There is a projective plane $\mathbf{M}^{*}=\left(\mathbf{P}^{*}, \mathbf{L}^{*}, \in\right)$ and an incidence structure epimorphism $\Psi: \mathbf{M} \rightarrow \mathbf{M}^{*}$, such that the conditions

$$
\Psi(P)=\Psi(Q) \Leftrightarrow P \sim Q, \Psi(g)=\Psi(h) \Leftrightarrow g \sim h
$$

hold for all $P, Q \in \mathbf{P}, g, h \in \mathbf{L}$.
Atilla Akpinar and Basri Çelik are with the Uludag University, Department of Mathematics, Faculty of Science, Bursa-TURKEY, emails: aakpinar@uludag.edu.tr, basri@uludag.edu.tr

A point $P \in \mathbf{P}$ is called near a line $g \in \mathbf{L}$ iff there exists a line $h \sim g$ such that $P \in h$.

An incidence structure automorphism preserving and reflecting the neighbour relation is called a collineation of \mathbf{M}.

A Moufang-Klingenberg plane (MK-plane) is a PK-plane \mathbf{M} that generalizes a Moufang plane, and for which \mathbf{M}^{*} is a Moufang plane (for the exact definition see [1]).

An alternative ring (field) \mathbf{R} is a not necessarily associative ring (field) that satisfies the alternative laws

$$
a(a b)=a^{2} b, \quad(b a) a=b a^{2}, \quad \forall a, b \in \mathbf{R} .
$$

An alternative ring \mathbf{R} with identity element 1 is called local if the set \mathbf{I} of its non-unit elements is an ideal.

We are now ready to give consecutively two important lemmas related to alternative rings.

Lemma 2.1: The subring generated by any two elements of an alternative ring is associative (cf. [7, Theorem 3.1]).

Lemma 2.2: The identities

$$
\begin{aligned}
& x(y(x z))=(x y x) z \\
& ((y x) z) x=y(x z x) \\
& (x y)(z x)=x(y z) x
\end{aligned}
$$

which are known as Moufang identities are satisfied in every alternative ring (cf. [6, p. 160]).

We summarize some basic concepts about the coordinatization of MK-planes from [1].

Let \mathbf{R} be a local alternative ring. Then $\mathbf{M}(\mathbf{R})=(\mathbf{P}, \mathbf{L}, \in$ $, \sim)$ is the incidence structure with neighbour relation defined as follows:

$$
\begin{aligned}
\mathbf{P}= & \{(x, y, 1): x, y \in \mathbf{R}\} \\
& \cup\{(1, y, z): y \in \mathbf{R}, z \in \mathbf{I}\} \\
& \cup\{(w, 1, z): w, z \in \mathbf{I}\}, \\
\mathbf{L}= & \{[m, 1, p]: m, p \in \mathbf{R}\} \\
& \cup\{[1, n, p]: p \in \mathbf{R}, n \in \mathbf{I}\} \\
& \cup\{[q, n, 1]: q, n \in \mathbf{I}\}, \\
{[m, 1, p]=} & \{(x, x m+p, 1): x \in \mathbf{R}\} \\
& \cup\{(1, z p+m, z): z \in \mathbf{I}\}, \\
{[1, n, p]=} & \{(y n+p, y, 1): y \in \mathbf{R}\} \\
& \cup\{(z p+n, 1, z): z \in \mathbf{I}\}, \\
{[q, n, 1]=} & \{(1, y, y n+q): y \in \mathbf{R}\} \\
& \cup\{(w, 1, w q+n): w \in \mathbf{I}\}
\end{aligned}
$$

and

$$
\begin{aligned}
& P=\left(x_{1}, x_{2}, x_{3}\right) \sim\left(y_{1}, y_{2}, y_{3}\right)=Q \Leftrightarrow \\
& x_{i}-y_{i} \in \mathbf{I}(i=1,2,3), \forall P, Q \in \mathbf{P} \\
& g=\left[x_{1}, x_{2}, x_{3}\right] \sim\left[y_{1}, y_{2}, y_{3}\right]=h \Leftrightarrow \\
& x_{i}-y_{i} \in \mathbf{I}(i=1,2,3), \forall g, h \in \mathbf{L} .
\end{aligned}
$$

Now it is time to give the following theorem from [1].
Theorem 2.1: $\mathbf{M}(\mathbf{R})$ is an MK-plane, and each MK-plane is isomorphic to some $\mathbf{M}(\mathbf{R})$.

Let \mathbf{A} be an alternative field and $\varepsilon \notin \mathbf{A}$. Consider $\mathcal{A}:=$ $\mathbf{A}(\varepsilon)=\mathbf{A}+\mathbf{A} \varepsilon$ with componentwise addition and multiplication as follows:

$$
\left(a_{1}+a_{2} \varepsilon\right)\left(b_{1}+b_{2} \varepsilon\right)=a_{1} b_{1}+\left(a_{1} b_{2}+a_{2} b_{1}\right) \varepsilon,
$$

where $a_{i}, b_{i} \in \mathbf{A}, i=1,2$. Then \mathcal{A} is a local alternative ring with ideal $\mathbf{I}=\mathbf{A} \varepsilon$ of non-units. The set of formal inverses of the non-units of \mathcal{A} is denoted as \mathbf{I}^{-1}. Calculations with the elements of \mathbf{I}^{-1} are defined as follows [2]:

$$
\begin{aligned}
(a \varepsilon)^{-1}+t & :=(a \varepsilon)^{-1}:=t+(a \varepsilon)^{-1}, \\
q(a \varepsilon)^{-1} & :=\left(a q^{-1} \varepsilon\right)^{-1}, \\
(a \varepsilon)^{-1} q & :=\left(q^{-1} a \varepsilon\right)^{-1}, \\
\left((a \varepsilon)^{-1}\right)^{-1} & :=a \varepsilon,
\end{aligned}
$$

where $(a \varepsilon)^{-1} \in \mathbf{I}^{-1}, t \in \mathcal{A}, q \in \mathcal{A} \backslash \mathbf{I}$. (Other terms are not defined.). For more information about \mathcal{A} and its relation to MK-planes, the reader is referred to the papers of Blunck [2], [3]. In [3], the centre $\mathbf{Z}(\mathcal{A})$ is defined to be the (commutative, associative) subring of \mathcal{A} which is commuting and associating with all elements of \mathcal{A}. It is $\mathbf{Z}(\mathcal{A}):=\mathbf{Z}(\varepsilon)=\mathbf{Z}+\mathbf{Z} \varepsilon$ where $\mathbf{Z}=\{z \in \mathbf{A}: z a=a z, \forall a \in \mathbf{A}\}$ is the centre of \mathbf{A}. If \mathbf{A} is not associative, then \mathbf{A} is a Cayley division algebra over its centre \mathbf{Z}. Throughout this paper we assume $\operatorname{char} \mathbf{A} \neq \mathbf{2}$ and we restrict ourselves to the MK-planes $\mathbf{M}(\mathcal{A})$. In the next section, we will introduce two collineations of $\mathbf{M}(\mathcal{A})$.

III. Two Collineations of $\mathbf{M}(\mathcal{A})$

In this section we will give two transformations. We will show that these are collineations of $\mathbf{M}(\mathcal{A})$.

Now we start with giving the transformations, where $w, z, q, n \in \mathbf{A}$: For any $s \notin \mathbf{I}$, the map \mathbf{J}_{s} transforms points and lines as follows:

$$
\begin{aligned}
& (x, y, 1) \rightarrow\left(y s^{-1}, x s, 1\right), \\
& (1, y, z \varepsilon) \rightarrow\left(1, s y^{-1} s, s\left(y^{-1} z\right)\right) \text { if } \quad y \notin \mathbf{I}, \\
& (1, y, z \varepsilon) \rightarrow\left(s^{-1} y s^{-1}, 1, s^{-1} z\right) \quad \text { if } y \in \mathbf{I}, \\
& (w \varepsilon, 1, z \varepsilon) \rightarrow(1, s w s, s z)
\end{aligned}
$$

and

$$
\begin{aligned}
& {[m, 1, k] \rightarrow\left[s m^{-1} s, 1,-\left(k m^{-1}\right) s\right] \text { if } m \notin \mathbf{I},} \\
& {[m, 1, k] \rightarrow\left[1, s^{-1} \mathrm{~ms}^{-1}, k s^{-1}\right] \text { if } m \in \mathbf{I},} \\
& {[1, n \varepsilon, p] \rightarrow[s n s, 1, p s],} \\
& {[q \varepsilon, n \varepsilon, 1] \rightarrow\left[s n, s^{-1} q, 1\right] .}
\end{aligned}
$$

For any $s \notin \mathbf{I}$, the map H_{s} transforms points and lines as follows:

$$
\begin{aligned}
&(x, y, 1) \rightarrow\left(s\left((y+s)^{-1} x\right),\left(s(y+s)^{-1}\right) y, 1\right) \\
& \text { if } y+s \notin \mathbf{I}, \\
&(x, y, 1) \rightarrow\left(1, x^{-1} y,\left(x^{-1}(y+s)\right) s^{-1}\right) \\
& i f \quad y+s \in \mathbf{I} \wedge x \notin \mathbf{I}, \\
&(x, y, 1) \rightarrow\left(y^{-1} x, 1, y^{-1}\left((y+s) s^{-1}\right)\right) \\
& i f \quad y+s \in \mathbf{I} \wedge x \in \mathbf{I}, \\
&(1, y, z \varepsilon) \rightarrow\left(s(y+z s)^{-1},\left(s(y+z s)^{-1}\right) y, 1\right) \\
& \text { if } y \notin \mathbf{I} \\
&(1, y, z \varepsilon) \rightarrow\left(1, y, z+y s^{-1}\right) \\
& i f \quad y \in \mathbf{I} \\
&(w \varepsilon, 1, z \varepsilon) \rightarrow\left(\left(s(1+z s)^{-1}\right) w, s(1+z s)^{-1}, 1\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& {[m, 1, k] \rightarrow\left[\begin{array}{c}
m-\left(m s^{-1}\right)\left(\left(s(s+k)^{-1}\right) k\right), \\
1,\left(s(s+k)^{-1}\right) k
\end{array}\right]} \\
& \text { if } s+k \notin \mathbf{I}, \\
& {[m, 1, k] \rightarrow\left[1, s^{-1}\left((s+k) m^{-1}\right),-k m^{-1}\right]} \\
& \text { if } s+k \in \mathbf{I} \wedge m \notin \mathbf{I}, \\
& {[m, 1, k] \rightarrow\left[-m k^{-1}, k^{-1}\left((s+k) s^{-1}\right), 1\right]} \\
& \text { if } s+k \in \mathbf{I} \wedge m \in \mathbf{I}, \\
& {[1, n \varepsilon, p] \rightarrow\left[(s n-p)^{-1} s, 1,-p\left((s n-p)^{-1} s\right)\right]} \\
& \text { if } \quad p \notin \mathbf{I}, \\
& {[1, n \varepsilon, p] \rightarrow\left[1, n-s^{-1} p, p\right]} \\
& \text { if } \quad p \in \mathbf{I}, \\
& {[q \varepsilon, n \varepsilon, 1] \rightarrow\left[-q\left(s(1+n s)^{-1}\right), 1, s(1+n s)^{-1}\right] .}
\end{aligned}
$$

Now we are ready to give the main result of the paper.
Theorem 3.1: The transformations J_{s} and H_{s}, defined above, are collineations of $\mathrm{M}(\mathcal{A})$.

Proof: The proof can be done by direct computation with using Moufang identities and properties of the local alternative rings (cf [1]). We will only show that J_{s} preserves the incidence relation (i.e. $P \in l \Leftrightarrow \mathbf{J}_{s}(P) \in \mathbf{J}_{S}(l)$) and the neighbour relation (i.e. $P \sim Q \Leftrightarrow \mathbf{J}_{s}(P) \sim \mathbf{J}_{s}(Q)$ and $\left.g \sim h \Leftrightarrow \mathbf{J}_{s}(g) \sim \mathbf{J}_{s}(h)\right)$.

Case 1. Let $P=(x, y, 1)$. Then $\mathrm{J}_{s}(P)=\left(y s^{-1}, x s, 1\right)$.
1.1. Let $l=[m, 1, k]$.
1.1.1. If $m \in \mathbf{I}$, then since $\mathbf{J}_{s}(P)=\left(y s^{-1}, x s, 1\right)$ and $\mathbf{J}_{s}(l)=\left[1, s^{-1} m s^{-1}, k s^{-1}\right]$, we have $\mathbf{J}_{s}(P) \in \mathbf{J}_{s}(l) \Leftrightarrow$ $y s^{-1}=(x s)\left(s^{-1} m s^{-1}\right)+k s^{-s}$. By Lemma 2.1 and 2.2, we get $\mathbf{J}_{s}(P) \in \mathbf{J}_{s}(l) \Leftrightarrow y s^{-1}=\left(\left(x s s^{-1}\right) m\right) s^{-1}+k s^{-1}=$ $(x m) s^{-1}+k s^{-1}$ and multiplying by s on the right, we find $y=x m+k \Leftrightarrow P \in l$.
1.1.2. If $m \notin \mathbf{I}$, then since $\mathbf{J}_{s}(P)=\left(y s^{-1}, x s, 1\right)$ and $\mathbf{J}_{s}(l)=\left[s m^{-1} s, 1,-\left(k m^{-1}\right) s\right]$, we have $\mathbf{J}_{s}(P) \in \mathbf{J}_{s}(l) \Leftrightarrow$ $x s=\left(y s^{-1}\right)\left(s m^{-1} s\right)+-\left(k m^{-1}\right) s$. Again by Lemma 2.1 and 2.2, we get $\mathbf{J}_{s}(P) \in \mathbf{J}_{s}(l) \Leftrightarrow x s=\left(\left(y s^{-1} s\right) m^{-1}\right) s+$
$-\left(k m^{-1}\right) s=\left(y m^{-1}\right) s-\left(k m^{-1}\right) s$ and multiplying by s^{-1} on the right, we obtain $\mathbf{J}_{s}(P) \in \mathbf{J}_{s}(l) \Leftrightarrow x=y m^{-1}-k m^{-1}$. Finally, by multiplying both sides on the right by $m, y=$ $x m+k \Leftrightarrow P \in l$.
1.2. Let $l=[1, n \varepsilon, p]$ where $n \in \mathbf{A}$. Then since $\mathbf{J}_{s}(P)=\left(y s^{-1}, x s, 1\right)$ and $\mathbf{J}_{s}(l)=[s n s, 1, p s]$, we have $\mathbf{J}_{s}(P) \in \mathbf{J}_{s}(l) \Leftrightarrow x s=\left(y s^{-1}\right)(s n s)+p s \Leftrightarrow x s=$ $\left(\left(y s^{-1} s\right) n\right) s+p s \Leftrightarrow x=y n+p \Leftrightarrow P \in l$.
1.3. Let $l=[q \varepsilon, n \varepsilon, 1]$ where $q, n \in \mathbf{A}$. In this case $P \notin l$. Since $\mathbf{J}_{s}(P)=\left(y s^{-1}, x s, 1\right)$ and $\mathbf{J}_{s}(l)=\left[s n, s^{-1} q, 1\right]$ then $\mathbf{J}_{s}(P) \notin \mathbf{J}_{s}(l)$. So, $P \notin l \Leftrightarrow \mathbf{J}_{s}(P) \notin \mathbf{J}_{s}(l)$.

Case 2. Let $P=(1, y, z \varepsilon)$ where $z \in \mathbf{A}$.
2.1. Let $l=[m, 1, k]$.
2.1.1. If $m \in \mathbf{I}$ and $y \in \mathbf{I}$ then since $\mathbf{J}_{s}(P)=$ $\left(s^{-1} y s^{-1}, 1, s^{-1} z\right)$ and $\mathbf{J}_{s}(l)=\left[1, s^{-1} m s^{-1}, k s^{-1}\right]$. In this case, we have $\mathbf{J}_{s}(P) \in \mathrm{J}_{s}(l) \Leftrightarrow s^{-1} y s^{-1}=s^{-1} m s^{-1}+$ $\left(s^{-1} z\right)\left(k s^{-1}\right)$. By Lemma 2.1, we obtain $\mathbf{J}_{s}(P) \in \mathbf{J}_{s}(l) \Leftrightarrow$ $s^{-1} y s^{-1}=s^{-1} m s^{-1}+s^{-1}(z k) s^{-1}$. By multiplying both sides on the right and left by s we find $\mathbf{J}_{s}(P) \in \mathbf{J}_{s}(l) \Leftrightarrow y=$ $m+z k$ and so $\mathbf{J}_{s}(P) \in \mathbf{J}_{s}(l) \Leftrightarrow P \in l$.
2.1.2. If $m \in \mathbf{I}$ and $y \notin \mathbf{I}$ then $y=m+z k \in \mathbf{I}$, which is a contradiction. That is, $P \notin l$. Also as a direct consequence of the coordinatization of $\mathbf{M}(\mathcal{A}), \mathbf{J}_{s}(P) \notin \mathbf{J}_{s}(l)$.
2.1.3. If $m \notin \mathbf{I}$ and $y \in \mathbf{I}$ then $y-z k=m \in \mathbf{I}$, which is a contradiction. That is, $P \notin l$. Also as a direct consequence of the coordinatization of $\mathbf{M}(\mathcal{A}), \mathbf{J}_{s}(P) \notin \mathbf{J}_{s}(l)$.
2.1.4. If $m \notin \mathbf{I}$ and $y \notin \mathbf{I}$ then since $\mathbf{J}_{s}(P)=$ $\left(1, s y^{-1} s, s\left(y^{-1} z\right)\right)$ and $\mathbf{J}_{s}(l)=\left[s m^{-1} s, 1,-\left(k m^{-1}\right) s\right]$.In this case, we have $P \in l \Rightarrow y=m+z k$. where $y^{-1}=m^{-1}-m^{-1}(z k) m^{-1}$. By Lemma 2.2, we get $y^{-1}=m^{-1}-\left(m^{-1} z\right)\left(k m^{-1}\right)$. Note that $m^{-1} z=y^{-1} z$ where $z \in \mathbf{I}$. So, $y^{-1}=m^{-1}-\left(y^{-1} z\right)\left(k m^{-1}\right)$. By multiplying both sides on the right and left by s, we find $s y^{-1} s=s m^{-1} s-s\left(\left(y^{-1} z\right)\right)\left(\left(k m^{-1}\right)\right) s$. By Lemma 2.2, we obtain $s y^{-1} s=s m^{-1} s-\left(s\left(y^{-1} z\right)\right)\left(\left(k m^{-1}\right) s\right)$ which means that $\mathbf{J}_{s}(P) \in \mathbf{J}_{s}(l)$. Conversely, let $\mathbf{J}_{s}(P) \in \mathbf{J}_{s}(l) \Rightarrow s y^{-1} s=$ $s m^{-1} s-\left(s\left(y^{-1} z\right)\right)\left(\left(k m^{-1}\right) s\right)$. Since $m \notin \mathbf{I}$ and $y \notin \mathbf{I}$, there exists $m_{1}, m_{2}, y_{1}, y_{2} \in \mathbf{A}$ such that $m_{1} \neq 0 \neq y_{1}$ and $m=m_{1}+m_{2} \varepsilon, y=y_{1}+y_{2} \varepsilon$. Then using the inverses $m^{-1}=m_{1}^{-1}-m_{1}^{-1} m_{2} m_{1}^{-1} \varepsilon$ and $y^{-1}=y_{1}^{-1}-y_{1}^{-1} y_{2} y_{1}^{-1} \varepsilon$ of m and y, respectively;

$$
\begin{aligned}
\left(1, s y^{-1} s, s\left(y^{-1} z\right)\right) & \in\left[s m^{-1} s, 1,-\left(k m^{-1}\right) s\right] \\
& \Leftrightarrow\left\{\begin{array}{l}
y_{1}^{-1}=m_{1}^{-1} \Leftrightarrow y_{1}=m_{1} \\
y_{1}^{-1} y_{2} y_{1}^{-1}=m_{1}^{-1} m_{2} m_{1}^{-1} \\
+\left(y_{1}^{-1} z\right)\left(k_{1} m_{1}^{-1}\right)
\end{array}\right.
\end{aligned}
$$

(in which k has the form $k_{1}+k_{2} \varepsilon$ where $k_{1}, k_{2} \in \mathbf{A}$) and so the solution of this equation system is

$$
y_{1}^{-1} y_{2} y_{1}^{-1}=y_{1}^{-1} m_{2} y_{1}^{-1}+\left(y_{1}^{-1} z\right)\left(k_{1} y_{1}^{-1}\right) .
$$

Since all terms of this equation are elements of Cayley division ring A, Moufang identities are valid. Therefore,

$$
\begin{aligned}
y_{1}^{-1} y_{2} y_{1}^{-1} & =y_{1}^{-1} m_{2} y_{1}^{-1}+y_{1}^{-1}\left(z k_{1}\right) y_{1}^{-1} \\
& =y_{1}^{-1}\left(m_{2}+z k_{1}\right) y_{1}^{-1} \\
& =y_{1}^{-1}\left(\left(m_{2}+z k_{1}\right) y_{1}^{-1}\right)
\end{aligned}
$$

is obtained. Then we have
$y_{1}^{-1} y_{2} y_{1}^{-1}=y_{1}^{-1}\left(\left(m_{2}+z k_{1}\right) y_{1}^{-1}\right) \Leftrightarrow y_{2}=m_{2}+z k_{1}$
from Lemma 2.1. Finally we have $y_{1}=m_{1}$ and $y_{2}=m_{2}+z k_{1}$ which means that $P \in l$.
2.2. Let $l=[1, n \varepsilon, p]$ where $n \in \mathbf{A}$. In this case, $\mathbf{J}_{s}(l)=[s n s, 1, p s]$ and $P \notin l$.
2.2.1. If $y \in \mathbf{I}$, then $\mathbf{J}_{s}(P)=\left(s^{-1} y s^{-1}, 1, s^{-1} z\right)$. Also as a direct consequence of the coordinatization of $\mathbf{M}(\mathcal{A})$, $\mathbf{J}_{s}(P) \notin \mathbf{J}_{s}(l)$.
2.2.2. If $y \notin \mathbf{I}$, then $\mathbf{J}_{s}(P)=\left(1, s y^{-1} s, s\left(y^{-1} z\right)\right)$. In this case we have $J_{s}(P) \in J_{s}(l) \Leftrightarrow s y^{-1} s=s n s+$ $\left(s\left(y^{-1} z\right)\right)(p s)$. By Lemma 2.2, $J_{s}(P) \in J_{s}(l) \Leftrightarrow s y^{-1} s=$ $s n s+s\left(\left(y^{-1} z\right) p\right) s$. By multiplying both sides on the right and left by s^{-1}, we find $J_{s}(P) \in J_{s}(l) \Leftrightarrow y^{-1}=n+\left(y^{-1} z\right) p \in \mathbf{I}$ which contradicts with our hypothesis $y \notin \mathbf{I}$. That is, $J_{s}(P) \notin$ $J_{s}(l)$.
2.3. Let $l=[q \varepsilon, n \varepsilon, 1]$ where $q, n \in \mathbf{A}$. In this case, $\mathbf{J}_{s}(l)=\left[s n, s^{-1} q, 1\right]$.
2.3.1. If $y \in \mathbf{I}$, then $\mathbf{J}_{s}(P)=\left(s^{-1} y s^{-1}, 1, s^{-1} z\right)$. So we have $J_{s}(P) \in J_{s}(l) \Leftrightarrow s^{-1} z=\left(s^{-1} y s^{-1}\right)(s n)+s^{-1} q$. By Lemma 2.1 and 2.2, we get $J_{s}(P) \in J_{s}(l) \Leftrightarrow s^{-1} z=$ $s^{-1}\left(y\left(s^{-1} s n\right)\right)+s^{-1} q$. By multiplying both sides on the left by s, we find $J_{s}(P) \in J_{s}(l) \Leftrightarrow z=y n+q$. So, $J_{s}(P) \in$ $J_{s}(l) \Leftrightarrow P \in l$.
2.3.2. If $y \notin \mathbf{I}$, then $\mathbf{J}_{s}(P)=\left(1, s y^{-1} s, s\left(y^{-1} z\right)\right)$. In his case, we have $J_{s}(P) \in J_{s}(l) \Leftrightarrow s\left(y^{-1} z\right)=s n+$ $\left(s y^{-1} s\right)\left(s^{-1} q\right)$. By Lemma 2.1 and 2.2, we get $J_{s}(P) \in$ $J_{s}(l) \Leftrightarrow s\left(y^{-1} z\right)=s n+s\left(y^{-1}\left(s s^{-1} q\right)\right)$. By multiplying both sides on the left by s, we find $J_{s}(P) \in J_{s}(l) \Leftrightarrow y^{-1} z=$ $n+y^{-1} q$. By multiplying both sides on the left by y, we obtain $J_{s}(P) \in J_{s}(l) \Leftrightarrow z=y n+q$. So, we get $J_{s}(P) \in J_{s}(l) \Leftrightarrow$ $P \in l$.

Case 3. Let $P=(w \varepsilon, 1, z \varepsilon)$ where $w, z \in \mathbf{A}$. Then $\mathrm{J}_{s}(P)=(1, s w s, s z)$.
3.1. Let $l=[m, 1, k]$. Then from the coordinatization of $\mathbf{M}(\mathcal{A})$ we obviously have $P \notin l$.
3.1.1. If $m \in \mathbf{I}$, then $J_{s}(l)=\left[1, s^{-1} m s^{-1}, k s^{-1}\right]$. Also as a direct consequence of the coordinatization of $\mathbf{M}(\mathcal{A})$, $\mathbf{J}_{s}(P) \notin \mathbf{J}_{s}(l)$.
3.1.2. If $m \notin \mathbf{I}$, then $J_{s}(l)=\left[s m^{-1} s, 1\right.$, $\left.-\left(k m^{-1}\right) s\right]$. In this case, we have $J_{s}(P) \in J_{s}(l) \Leftrightarrow$ sws $=s m^{-1} s-(s z)\left(\left(k m^{-1}\right) s\right)$. By Lemma 2.2, we get $J_{s}(P) \in J_{s}(l) \Leftrightarrow$ sws $=s m^{-1} s-s\left(z\left(k m^{-1}\right)\right) s$. By multiplying both sides on the right and left by s^{-1}, we find $J_{s}(P) \in J_{s}(l) \Leftrightarrow w=m^{-1}-z\left(\mathrm{~km}^{-1}\right)$. So, we obtain $J_{s}(P) \in J_{s}(l) \Leftrightarrow m^{-1}=w+z\left(k m^{-1}\right) \in \mathbf{I}$ which contradicts with our hypothesis $m \notin \mathbf{I}$. That is, $J_{s}(P) \notin J_{s}(l)$.
3.2. Let $l=[1, n \varepsilon, p]$ where $n \in \mathbf{A}$. Then $J_{s}(P)=$ $[s n s, 1, p s]$. In this case, $J_{s}(P) \in J_{s}(l) \Leftrightarrow s w s=s n s+$ $(s z)(p s)$. By Lemma 2.2, we have $J_{s}(P) \in J_{s}(l) \Leftrightarrow s w s=$ $s n s+s(z p) s$. By multiplying both sides on the right and left by s^{-1}, we obtain $J_{s}(P) \in J_{s}(l) \Leftrightarrow w=n+z p$ which means that $P \in l$.
3.3. Let $l=[q \varepsilon, n \varepsilon, 1]$ where $q, n \in \mathbf{A}$. Then $\mathbf{J}_{s}(l)=$ $\left[s n, s^{-1} q, 1\right]$. In this case we have $J_{s}(P) \in J_{s}(l) \Leftrightarrow s z=$ $s n+(s w s)\left(s^{-1} q\right)=s n+s(w q)$ by Lemma 2.1 and 2.2. By multiplying both sides on the left by s^{-1}, we find $J_{s}(P) \in$ $J_{s}(l) \Leftrightarrow z=n+w q$ which means that $P \in l$.

Now, we will show that J_{s} preserves the neighbour relation for the point and the lines by using properties of ideals. The case in which the most complicated computations arise is when $m, u \notin \mathbf{I}$ for the lines $[m, 1, k]$ and $[u, 1, v]$. Therefore we give the proof for only this case. Then $\mathbf{J}_{s}([m, 1, k])=\left[s m^{-1} s, 1,-\left(k m^{-1}\right) s\right]$ and $\mathbf{J}_{s}([u, 1, v])=$ $\left[s u^{-1} s, 1,-\left(v u^{-1}\right) s\right]$ and also

$$
\begin{aligned}
& {\left[s m^{-1} s, 1,-\left(k m^{-1}\right) s\right] \sim\left[s u^{-1} s, 1,-\left(v u^{-1}\right) s\right]} \\
& \Leftrightarrow m^{-1}-u^{-1} \in \mathbf{I} \wedge v u^{-1}-k m^{-1} \in \mathbf{I} \\
& \Leftrightarrow m_{1}^{-1}-u_{1}^{-1}=0, v_{1} u_{1}^{-1}-k_{1} m_{1}^{-1}=0 \\
& \Leftrightarrow m_{1}=u_{1}, v_{1}=k_{1} \\
& \Leftrightarrow m_{1}-u_{1}=0, v_{1}-k_{1}=0 \\
& \Leftrightarrow m-u \in \mathbf{I} \wedge v-k \in \mathbf{I}(\text { or } k-v \in \mathbf{I}) \\
& \Leftrightarrow[m, 1, k] \sim[u, 1, v] .
\end{aligned}
$$

References

[1] Baker C.A., Lane N.D., Lorimer J.W. A coordinatization for MoufangKlingenberg planes. Simon Stevin 65(1991), 3-22.
[2] Blunck A. Cross-ratios over local alternative rings. Res. Math. 19(1991), 246-256.
[3] Blunck A. Cross-ratios in Moufang-Klingenberg planes. Geom. Dedicata 43(1992), 93-107.
[4] Celik B., Akpinar A., Ciftci S. 4-Transitivity and 6-figures in some Moufang-Klingenberg planes. Monatshefte für Mathematik 152(2007), 283-294.
[5] Hughes D.R, Piper F.C. Projective planes. Springer: New York (1973).
6] Pickert G. Projektive Ebenen. Springer: Berlin (1955)
[7] Schafer R.D. An introduction to nonassociative algebras. Dover Publications, New York, (1995).
[8] Stevenson F.W. Projective planes. W.H. Freeman Co.: San Francisco (1972).

