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Abstract—In this work, the primary compressive strength 
components of human femur trabecular bone are qualitatively 
assessed using image processing and wavelet analysis. The Primary 
Compressive (PC) component in planar radiographic femur trabecular 
images (N=50) is delineated by semi-automatic image processing 
procedure. Auto threshold binarization algorithm is employed to 
recognize the presence of mineralization in the digitized images. The 
qualitative parameters such as apparent mineralization and total area 
associated with the PC region are derived for normal and abnormal 
images.The two-dimensional discrete wavelet transforms are utilized 
to obtain appropriate features that quantify texture changes in medical 
images .The normal and abnormal samples of the human femur are 
comprehensively analyzed using Harr wavelet.The six statistical 
parameters such as mean, median, mode, standard deviation, mean 
absolute deviation and median absolute deviation are derived at level 
4 decomposition for both approximation and horizontal wavelet 
coefficients. The correlation coefficient of various wavelet derived 
parameters with normal and abnormal for both approximated and 
horizontal coefficients are estimated. It is seen that in almost all cases 
the abnormal show higher degree of correlation than normals. Further 
the parameters derived from approximation coefficient show more 
correlation than those derived from the horizontal coefficients. The 
parameters mean and median computed at the output of level 4 Harr 
wavelet channel was found to be a useful predictor to delineate the 
normal and the abnormal groups. 
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I. INTRODUCTION 
SSESSMENT of mechanical strength of bone remains a 
central issue in biomechanics. The architecture of the 

bone is composed of the cortical bone shell and trabecular 
bone core. Trabecular bone is a spongy, porous type found at 
the ends of all bones, such as pelvis and spine [1]. In proximal 
femur, trabecular bone forms a pattern of net-like strands 
varying in thickness and number [2]. It has a complex three-
dimensional structure consisting of struts and plates.  
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Trabecular bone is a dynamic system and its architecture can 

adaptively compensate for local deficiencies in strength 
through remodeling or micro modeling [3].  Many lines of 
evidence indicate that the decreased bone strength 
characteristic of osteoporosis is dependent not only on BMD, 
but also on trabecular bone microarchitecture [4], [5] and 
mineralization [6]. The correlation between bone strength and 
bone mass is well established but the relationship between 
trabecular microarchitecture and biomechanical properties are 
less explored [7], [8].  

Bone mineral density is usually assessed using Dual Energy 
X-ray Absorptiometry (DEXA) [9], Radiographic 
Absorptiometry (RA) [10], [11] or Computed Tomography 
(CT) equipments [9]. Although these techniques generate 
three-dimensional data, radiographic images using film or 
digital images provide the most common mode of assessment 
in orthopedic units.  The significant parts of the information 
that are available in 3D images are also available in the 
conventional radiograph [12]. Further, digital imaging and 
digital image processing techniques are new developments 
which increase the diagnostic value of radiographs [13], [14]. 
Hence, there has been considerable interest in using 
conventional radiography combined with various image and 
texture analysis techniques for assessing trabecular structure 
[15]. 

Recently, methods based on multiresolution or multichannel 
analysis such as wavelet transform has been introduced for 
characterizing texture properties. They outperform most 
traditional single resolution techniques which fail to 
characterize textures with different resolutions effectively. 
Wavelet provides a precise and unified framework for spatial 
scale analysis. This tool has already and successfully been 
proposed for texture analysis using wavelet packets [16] and 
wavelet frames [17]. The first technique leads to adaptive 
wavelet decomposition while the second yields a description of 
translation invariant. Wavelet analysis is successfully used in 
functional medical imaging and finds wide application with 
MR imaging [18]. An application of wavelet-based texture 
analysis has been also reported for several biological structures 
[19], [20].  

In this work, primary compressive strength component of 
human femur trabecular bone in radiographic images were 
analyzed using wavelets. The processed normal and abnormal 
images were decomposed at level 4 using Harr wavelet and the 
statistical parameters that characterize the texture features were 
derived for analysis. 
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II. METHODOLOGY 
Digitized pelvis images (N=50, Normal 25, Abnormal 25), 

recorded using clinical x-ray unit (Siemens 500mA Polyscope) 
were considered for the study. The exposures were made with 
160 mAs at 60 kVp and exposure time was 0.05s. The standard 
anteroposterior view was used to image all subjects and the 
recorded radiographs were digitized using an AGFA digitizer. 
The proximal femur bone with constant resolution of image 
size 300 x 350 was cropped from the digitized pelvis images. 
Auto threshold binarization algorithm was employed to 
recognize the presence of mineralization in the digitized 
images by considering the neighborhood pixels [21], [22].  

 
Fig. 1 Representation of various strength zones (Singh et al): Primary 

compressive (1) 
 

The distributions of mineralization in primary compressive 
region in the binarized images were delineated as region of 
interest as proposed by Singh et al. [23]. The regions of 
interest were marked by the position of the regions described 
in terms of a coordinate system. The axes are shortest line 
across the femoral neck and a line through the center of the 
femoral head and midpoint of the two axes are shown in the 
Fig. 1. The primary supporting structure of the femoral head to 
be the primary compressive strut, is a dense column of 
trabecular bone projecting from the pressure buttress of the 
medial femoral neck which is the predominant load-bearing 
structure connecting the femoral head to the femoral neck [24]. 

The delineated images are then subjected to wavelet based 
analysis. Wavelets are the multiresolution techniques intend to 
transform an image into a presentation in which information 
regarding both the nature of the frequency components (high 
or low) and the location of occurrence of thSese frequencies in 
the image axe preserved. The qualitative analyses were also 
performed on the delineated images to derive apparent 
mineralization and total area. The percentage of apparent 
mineralization is the ratio of bone area to the total area. 

For multiresolution decomposition of images, it is often 
desirable to differentiate the local orientation of the image 
features. For this purpose, a scaling function (x, y), which is 
a lowpass filter, is introduced along with three wavelet 
functions (x, y) (1  ≤  I ≤  3) where each wavelet (x, y) 

(x, y) and (x, y) can be interpreted as the impulse 
response of a bandpass filter having a specific orientation 
selectivity in the vertical, horizontal and diagonal directions, 
respectively. The low-pass and high-pass filtering actions are 
performed using digital filters with impulse responses G and 
H, (G and H form a pair of quadrature mirror filters) 
respectively [25]. An image f(x, y) with a spatial resolution of 
2 j can therefore be decomposed through level-1 using 
 
f(x, y) =    A1

2
j (x – 2-jn, y - 2-jm) 

              + H 1 2
j (x – 2-jn, y - 2-  jm) 

              + V1 2
j (x – 2-jn, y - 2-jm) 

              + D1 
2

j (x – 2-jn, y   - 2-jm)                                   (1)                  
Where 
 
A1 = ((f (x, y), 2

j  (x – 2-jn, y - 2-jm))n, m  z 2                                 (2)                     

H1 = ((f (x, y), 2
  (x – 2-jn, y - 2-jm))n, m  z 2           (3)  

V1 = ((f (x, y), 2
  (x – 2-jn, y - 2-jm))n, m  z 2           (4) 

D1 = ((f (x, y), 2
  (x – 2-jn, y - 2-jm))n, m z 2                  (5)

        
Each of the above sequences of inner products can be 

considered as an image. The DWT decomposition of an image 
into four channels, namely A 1, H 1, V 1 and D 1, involves 
first the convolution of the original image with impulse 
responses of low-pass filter G and high-pass filter H, 
respectively, along the rows and then columns, which produces 
four filtered images, each with every second sample redundant. 
Therefore the filter stage is followed by the process of sub-
sampling by a factor of 2 (discarding every other sample), 
which reduces the size or spatial resolution of the filtered 
images to half the original image. Therefore level-1 DWT 
decomposition of an image produces a representation of the 
image in the form of four sub-images, where A 1 represents the 
spatial distribution of low-frequency components, and H 1, V 1 
and D 1 represent the spatial distribution of high-frequency 
components present at a resolution half that of the original 
image. Among the high-frequency channels, H 1 gives the 
horizontal edges (vertical high frequencies), V 1 gives the 
vertical edges (horizontal high frequencies), and D 1 gives 
higher frequencies in both directions (corners). This set of four 
images is called an orthogonal wavelet representation in two 
dimensions. The decomposition process can be recursively 
applied to the low-frequency channel A 1 to generate image 
details A 2 (low-frequency channel) and H 2, V 2 and D 2 
(high-frequency channels), at the next level and so on. The G 
and H filters are used to implement the wavelet transform [26].  

III. RESULTS AND DISCUSSION 
The binarized radiographic images of femur trabeculae bone 

is shown in Fig. 2. Fig. 2(a) is image of a normal sample 
whereas Fig. 2(b) is that of the abnormal. The normal 
trabeculae patterns are distinctly seen as they are closely 
organized. Characteristic discontinuities, overlaps and large 
spacings are seen in abnomals.  
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(a) Normal bone                     (b) Abnormal bone 

 

Fig. 2 Binary image representation of Trabeculae bone 
                

The normal and abnormal images of femur trabecular bone 
are analyzed using Harr wavelet. The statistical  parameters 
such as mean, median, mode, standard deviation, mean 
absolute deviation and median absolute deviation are estimated 
at level 4 decomposition for both approximation and horizontal 
wavelet coefficients.  
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                 (a) Normal bone                    (b) Abnormal bone 
 

Fig. 3 Variations of mean with apparent mineralization in primary 
compressive component of normal and abnormal samples 

 
The scattergram showing the variation in mean derived from 

approximation coefficient with apparent mineralization in 
primary compressive strength component region for normal 
and abnormal samples are shown in the Fig. 3(a) and 3(b) 
respectively. Although there is a linear relationship it is found 
that the correlation coefficient for a normal sample is 0.56321. 
This could be attributed to large variation in apparent 
percentage mineralization among normals. In the case of 
abnormal, the correlation coefficient of mean with apparent 
mineralization is higher than the normal samples. 
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                  (a) Normal bone                      (b) Abnormal bone 

Fig. 4 Variations of median with apparent mineralization in primary 
compressive component of normal and abnormal samples 

The scattergram showing the variation in median derived 
from approximation coefficient with apparent mineralization in 
primary compressive strength component region for normal 
and abnormal samples is plotted in the Fig. 4(a) and 4(b) 
respectively. Higher degree of linear correlation is observed 
for both the cases. Correlation was more in abnormal than 
normals. 

The correlation coefficient of various wavelet derived 
parameters with normal and abnormal for both approximated 
and horizontal coefficients is estimated and is shown in Table 
I. It is seen that in almost all cases the abnormal show higher 
degree of correlation than normals. Further the parameters 
derived from approximation coefficient show more correlation 
than those derived from the horizontal coefficients. Among all 
the parameters mode, standard deviation, mean absolute 
deviation and median absolute deviation show poor degrees of 
correlation. Thus the parameters mean and median derived 
from approximated coefficients seems to be useful parameters 
to differentiate normals and abnormal. 

 
 

TABLE I 
CORRELATION COEFFICIENT OF VARIOUS WAVELET DERIVED PARAMETERS 

WITH NORMAL AND ABNORMAL FOR BOTH APPROXIMATED AND HORIZONTAL 
COEFFICIENTS 

Approximated Coefficient 
 

Horizontal Coefficient 
 
 

Statiatical 
Parameters 

Derived from 
Harr Wavelet Normal Abnormal Normal Abnormal 

Mean 0.56321 0.79696 0.29576 0.42406 
Median 0.64692 0.79723 0.2685 0.11166 
Mode 0.24093 0.7793 0.38509 0.32944 
standard 
deviation 

0.29346 0.60502 0.60473 0.35091 

median ab dev 0.37547 0.4713 0.53821 0.22336 
mean ab dev 0.32606 0.58403 0.67761 0.31957 

IV. CONCLUSION 
Characterization of the trabecular structural properties 

appears to be an important adjunct to the measurement of bone 
mass in determining fracture risk with greater accuracy [27]. 
Using histological and stereological analysis, it has been 
shown that, by combining structural features with bone 
density, nearly all of the variability in mechanically measured 
Young’s moduli could be explained [28]. However, the 
evaluation of bone structure, by non-invasive procedures, 
remains a difficult issue [29]. Over the last several years, 
different imaging techniques have been developed and 
optimized for the reconstruction of trabecular bone structure 
both in vitro and in vivo [30]. The development of image 
analysis techniques for the characterization of the 3D-
trabecular bone structure remains a privileged research field 
[31]. 

The percentage mineralization in primary compressive 
regions is found to be uniformly high in all the images, which 
indicate that primary compressive is the principle strength 
component of the human femur bone and is in agreement with 
the earlier results. Mineralization is found to be high in normal 
images as the observed median and mode is high. Thus it 
appears that the region specific statistical parameters are useful 
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to identify strength and weakness of femur bone from planar 
radiographic images. To conclude, trabecular patterns appear 
in the proximal part of the human femur is capable of 
estimating fracture risk and can be reliably measured by 
wavelet analysis. It may also be possible to use trabecular 
texture in conjunction with clinical data to further increase the 
efficacy of fracture risk estimation. Moreover this procedure 
can also be automated to enhance the diagnosis without much 
human intervention, which would be useful for mass screening 
of osteoporosis and bone mass disorders. 

In this study, trabecular structure and its mechanical strength 
distribution on human femur bone are analyzed using planar 
radiographs and wavelet analyses. Acquired digital images of 
proximal femur trabecular bone are subjected to auto threshold 
binarization to minimize the irregularities in images due to 
uneven exposure conditions. From the binarized image primary 
compressive strength components are delineated and the 
corresponding structural and statistical parameters are 
estimated.  

In this work the normal and abnormal samples of the human 
femur is comprehensively analyzed using Harr wavelet. The 
six statistical  parameters such as mean, median, mode, 
standard deviation, mean absolute deviation and median 
absolute deviation are derived at level 4 decomposition for 
both approximation and horizontal wavelet coefficients. The 
parameters derived from approximation coefficient show more 
correlation than horizontal coefficients. It is found that better 
correlation is observed for abnormal samples. The parameters 
mean and median computed at the output of level 4 Harr 
wavelet channel was found to be a useful predictor to delineate 
the normal and the abnormal groups. 
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