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 Abstract—The clinical usefulness of heart rate variability is 
limited to the range of Holter monitoring software available. These 
software algorithms require a normal sinus rhythm to accurately 
acquire heart rate variability (HRV) measures in the frequency 
domain. Premature ventricular contractions (PVC) or more 
commonly referred to as ectopic beats, frequent in heart failure, 
hinder this analysis and introduce ambiguity. This investigation 
demonstrates an algorithm to automatically detect ectopic beats by 
analyzing discrete wavelet transform coefficients. Two techniques 
for filtering and replacing the ectopic beats from the RR signal are 
compared. One technique applies wavelet hard thresholding 
techniques and another applies linear interpolation to replace ectopic 
cycles. The results demonstrate through simulation, and signals 
acquired from a 24hr ambulatory recorder, that these techniques can 
accurately detect PVC’s and remove the noise and leakage effects 
produced by ectopic cycles retaining smooth spectra with the 
minimum of error.   
 

Keywords—Heart rate variability, vagal tone, sympathetic, 
parasympathetic, wavelets, ectopic beats, spectral analysis. 

I. INTRODUCTION 
EART rate variability is a measure of alterations in heart 
rate by measuring the variation of RR intervals and has 

been shown to provide an assessment of cardiovascular 
disease [1]. Heart rate is influenced by both sympathetic and 
parasympathetic (vagal) activity. The influence and balance of 
both branches of the anatomic nervous system (ANS) is 
known as sympathovagal tone reflected in the RR interval 
changes. HRV measurements can be made by spectral analysis 
where a measure of the power in each of four frequency bands 
is representative of the four components of HRV. A low 
frequency  (LF) component provides a measure of 
sympathetic effects on the heart and generally occurs in a 
band between 0.04 Hz and 0.15 Hz. Non regular effects such 
as chemoreceptors, thermoreceptors, and the 
reninangiothensin system can be monitored at ultra-low 
frequencies. A measurement of the influence of the vagus 
nerve in modulating the sinoatrial node can be made in the 
high frequency band (HF) loosely defined between 0.15 and 
0.4 Hz known as respiratory sinus arrhythmia (RSA), and is a 
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measure of cardiac parasympathetic activity. This rhythm is 
generated by the sinoatrial node; sometimes referred to as the 
pacemaker of the heart, and is nodal tissue located on the 
upper wall of the right atrium and sets the rate of contraction 
by generating nerve impulses causing the atria to contract.  
This frequency band or rate of contractions can be variable 
though closely related to the frequency of respiration. The 
ratio of power in the LF and HF bands (LF/HF) provides a 
measure of cardiac sympathovagal balance. Several studies 
have indicated that the powers of the LF and HF components, 
occurring in synchrony with vasomotor waves and respiratory 
acts, respectively, appear to reflect in their reciprocal 
relationship the state of sympathovagal balance in numerous 
physiological and pathophysiological conditions [2-4]. A 
correlation between body fat content and the LF/HF ratio after 
glucose ingestion have been correlated in nonobese subjects 
with various levels of body fat content [5]. Decreased values 
of HRV measures are indirectly proportional to pressure, body 
mass index and insulinemia in young and obese patients 
without clinical symptoms of cardiovascular disease, diabetes 
or damage of target organs. In a study by Ravagli et al [6], 
pressure values correlated closely with the insulin level. These 
HRV measurements in the simplest form can be sensitive to 
stress i.e. the mental load on the brain. This measure can be 
seen to decrease with age, which has been attributed to a 
decrease in efferent vagal tone. Exercise on the other hand 
increases vagal tone. The scope of what HRV is capable of 
diagnosing or determining is far from understood and it is a 
busy area of research. It has been used as a measure of 
mortality primarily with patients who have undergone cardiac 
surgery. Clinical depression strongly associated with mortality 
with such patients may be seen through a decrease in HRV 
[7]. Spectral HRV was previously described as a measure of 
power in various frequency bands. To determine the RSA 
amplitude over a period of time, frequency domain, time 
domain and phase domain approaches have been analyzed. A 
time-domain approach by Grossman [8] known as the peak-
valley algorithm measures the maxima and minima values of 
RR time intervals within each breath. In the frequency domain 
a value for RSA can be derived by applying an appropriate 
window function to a given time series to reduce spectral 
leakage from random events and applying the Fourier 
transform to the filter residuals. When analyzing the HF band 
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the respiratory frequency should be predetermined through 
some kind of respiratory monitor, determined through paced 
breathing or at worst estimated. This frequency domain 
approach takes the average response over time, nominally a 5-
minute period. This approach provides little information about 
the RSA waveform as it is time averaged and may not reflect 
the cardiac vagal dynamics. Another approach to evaluating 
RSA has been to analyze dynamics of heart rate with respect 
to phase [9] and is referred to as the phase domain approach. 
Frequency domain approaches to HRV, which are essential 
for the low frequency sympathetic measures are greatly 
hindered by the presence of ectopic beats [10-11]. Ectopic 
beats, when activated in the ventricles, are fairly common in 
subjects suffering from heart failure. There exist algorithms 
that detect and classify ectopic beats [12], but for HRV 
analysis these beats must be removed either by editing [13], or 
some means of interpolation or filtering. This paper describes 
a wavelet-based approach using Daubechies wavelets for 
detecting and filtering PVCs, and compares the filtering 
technique to linear interpolation based on simulation data and 
data from a heart failure patient. 

II. METHODS 

A. Data Collection 
The data in this investigation was collected from an 

ambulatory monitoring device, the LifeShirt. The LifeShirt 
employs the Konno and Mead [14] two compartment-
breathing model of the respiratory system. This approach 
shows changes in tidal volume measured at the mouth to be 
comparable to the sum of changes in ribcage and abdominal 
contributions. These volume changes are normally obtained 
by measuring variations in the thoracic and abdominal regions 

by inductive plethysmography (IP), magnetometers, or strain 
gauges [15-17]. The LifeShirt contains two IP sensors 
encircling the ribcage and abdomen used to measure tidal 
volume. A low oscillating current is passed through these 
inductive bands creating a magnetic field that is required to 
measure the self-inductance of the band’s coil. The self-
inductance of the coil is proportional to the cross sectional 
area of the band. As this cross sectional area changes the coils 
self-inductance changes. Changes in self-inductance are 
measured by integrating an oscillator circuit whose resonant 
frequency varies with changes in self-inductance. A counter 
measures this resonant frequency by counting the pulses 
produced by the oscillator over time, creating a waveform 
proportional to changes in the cross sectional area. These 
bands are then calibrated to adjust the contribution of each 
band to overall tidal volume base on Equation (1)  

 
ABlRCkVt .. +=         (1) 

 
where Vt is the tidal volume measurement, RC and AB are the 
ribcage and abdominal bands, and k and l are calibration 
coefficients that apply the appropriate gain to each signal 
based on a calibration algorithm [18][19]. The LifeShirt 

acquires single lead ECG (lead II) sampled at a rate of 200 
Hz, which is linearly interpolated in software by a factor of 5, 
producing an ECG with 1 kHz resolution. Heart rate is 
determined based on the Pan-Tompkins algorithm [20] for 
QRS detection. The RR interval signal is derived from the 
temporal R wave peak, which is determined by locating the 
peak point within the QRS complex.  The RR signal is then 
processed by filters and uniformly sampled prior to spectral 
analysis. 

B. Spectral Analysis 
The instantaneous RR interval is preprocessed creating a 

uniformaly sampled signal. This process is illustrated in 
Figure 1 where the instantaneous RR interval is uniformly 
sampled at 50Hz and resampled at 5Hz by low pass filter 
decimation. 

 
 
 
 
 
 
 
 
 

Fig. 1 Block diagram of HRV preprocessing 
 
Five-minute time windows are detrended using a best 

straight line fit approach with the segment mean removed. 
Welch's [21] power spectral density estimation approach is 
then applied. Welch's averaged, modified periodogram 
method that applies sections of the RR signal with 50% 
overlap, with each section  windowed with a Hamming 
window and nine modified periodograms are computed and 
averaged. A five-minute window is decomposed into 1-minute 
windows with 300 samples; sampled at 5 Hz. Each 1 minute 
window is zero padded to a 2048 sample length and the power 
of the FFT averaged. Various window functions may be 
applied, although a rectangular window will normally 
introduce some spectral leakage, and other window functions 
such as Blackman-Harris and Nutal can smear the spectra, but 
are also preferred in certain circumstances. The power in the 
LF and HF bands is determined [22] and the ratio of LF and 
HF calculated to evaluate sympatovagal balance.  

C. Discrete Wavelet Transform 
Prior to spectral analysis ectopic beats are identified and 

processed. The discrete wavelet transform (DWT) is used for 
both identification and filtering of ectopic beats. Wavelet 
coefficients at the highest level of detail are analyzed to locate 
the ectopic cycles. The DWT coefficients are obtained from 
the unprocessed RR interval signal by decomposing it into a 
set of frequency bands by applying low pass and high pass 
filter banks. Theses subbands are distributed logarithmically 
in frequency, each sampled at a rate that has a natural 
proportion to the frequencies in that band. Figure 2 illustrates 
this subband decomposition where the original signal x[n] or 
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in this case the instantaneous RR interval is passed through a 
halfband high pass filter h[n] and a low pass filter g[n] 
creating two subbands both sampled at half the original 
frequency.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 Wavelet decomposition and reconstruction 
 

These filters approximate halfband FIR filters that are 
determined by the choice of wavelet. The bandwidth of each 
filter output and subband is illustrated by a fraction of the 
sampling frequency where π is equal to the Nyquist rate or 
half the sampling frequency, therefore half of the samples can 
be eliminated. This demonstrates one level of wavelet 
decomposition, which can be expressed as: 
 

                      (2) 
 

                      (3) 
 
where the g terms denote the low pass output and h terms 
denote the high pass output. This decomposition is reapplied 
to the low subband output repeatedly creating logarithmic 
resolution in the frequency domain. This has the effect of 
doubling the frequency resolution and reducing the time 
resolution by a factor of 2 since half the number of samples 
now make up the signal. This subband coding procedure is 
repeated for further decomposition until there is no data left to 
decompose, where every decomposition results in half the 
number of samples, thereby decreasing the time resolution by 
a factor of 2 and taking half the frequency band thereby 
doubling the frequency resolution. Only ideal halfband filters 
such as various wavelet packets allow for perfect 
reconstruction to the original signal, for example Daubechies 
set of wavelets [23]. Also illustrated in Figure 2 is the 
reconstruction process of this decomposed signal. 
Reconstruction normally takes places after some kind of soft 
or hard thresholding, or compression. The reconstruction in 
the case of wavelets uses the fact that these halfband filters 
form orthonormal bases. Therefore the decomposition 
procedure is followed in reverse order for the reconstruction. 
The wavelet subband coefficients at every level are upsampled 
by two, passed through synthesis filters g'[n], and h'[n] (high 

pass and low pass) which make up the inverse discrete 
wavelet transform (iDWT), and are added. The analysis and 
synthesis filters are identical to each other, except for a time 
reversal. Signal reconstruction is therefore the inverse DWT. 
The reconstruction process is shown on the right side Figure 
2. The signal is interpolated by filling in zeros for every other 
sample prior to filtering thereby restoring the subband of the 
signal to its original length. This process is expressed by 
Equation (4). 
 

          (4) 
 

D. Thresholding 
Following decomposition and prior to the wavelet 

reconstruction process, ectopic beats are removed by a 
thresholding process. Soft thresholding or shrinkage requires 
selecting a threshold where all wavelet coefficients in each 
subband falling below this threshold are reduced to zero and 
coefficients above this thereshold have the threshold 
subtracted from it, so the coefficients tend toward zero. Hard 
thresholding requires reducing the coefficients below this 
threshold to zero leaving coefficients above this threshold 
constant. This nonlinear approach is very different from 
conventional filtering and has been shown to be very effective 
denoising images. Donoho and Johnstone [24-27] have 
demonstrated the usefulness of this approach against 
traditional linear methods of smoothing which suppress noise, 
but can also broaden the signals features, which can lead to 
error in HRV measures. This hard thresholding approach is 
demonstrated by Equation (5):  
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where the threshold T is chosen for the higher frequency RR 
intervals, which will allow the removal of ectopic beats whilst 
retaining the signal quality. Therefore coefficients above this 
threshold are set zero. 

 
 
 
 

Fig. 3 Wavelet thresholding and filtering 
 
The block diagram of Figure 3 outlines the process of 

filtering ectopic beats from RR interval signals using wavelet 
filtering. The instantaneous RR intervals are first passed 
through the DWT with up to 5 levels of decomposition (scales 
S=5) illustrated on the left side of Figure 2. Hard thresholding 
is applied to each wavelet coefficient for each scale or 
subband using Equation (5), where T is precomputed based on 
the average level of DWT coefficients produced from ectopic 
beats. Following hard thresholding the iDWT is applied to the 
coefficients where higher amplitude coefficients generated by 
ectopic beats are replaced with zero. The iDWT process is 
illustrated on the right side of Figure 2 showing the 
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reconstruction of the filtered signal. This filtering process has 
the effect of interpolating bad beats. 

E. Interpolation 
Another approach for removing ectopic beats is by 

interpolation. Ectopic beats are first identified by DWT and 
then 2 beat cycles are low pass interpolated to create a smooth 
signal. Ectopic beats are typically beats with a shorter cardiac 
cycle (coupling interval), followed by a longer cardiac cycle 
(post-extrasystolic pause). The ectopic beats are thus replaced 
by linear interpolated samples expressed in Equation (6) 

 
 ∑

−

=

=
1

0

N

n
Nn xaX                                    (6) 

 
where N = 17 and the a terms are FIR filter coefficients 
modeling a symmetrical filter which allows the original data 
to pass through unchanged and interpolates between samples 
so as the mean square error between them and their ideal 
values is minimized. The sample outputs are the last samples 
in the 17 long sequence going back 9 cycles and placing zeros 
between each cycle to be interpolated.  

F. Simulation 
Before applying the detection and correction procedures to 

real signals a simulation was designed to be roughly 
representative of the characteristics of real life respiratory and 
heart rate signals. This enables simple testing of detection 
accuracy. Equations (7) and (8) simulate the RR interval and 
tidal volume signals respectively, 

 
CtfBtfAts llhh ++++= )2sin()2sin()( απαπ        (7) 

 
EtfDtVt h += )2cos()( π                          (8) 

 
where A is the peak-to-peak RSA amplitude per breath 
expressed in ms, B is the sympathovagal balance expressed as 
a ratio of LF to HF power and C is the mean RR interval. 
Tidal volume is expressed by D, and E is a DC offset whose 
value depends on ribcage and abdominal cross sectional area, 
which varies with changes in posture and mass, as the signals 
are DC coupled. The parasympathetic (HF) and sympathetic 
(LF) components have frequencies fh , fl and phases αh, αl 
respectively. The signals are sampled with 1ms resolution 
where t = 0, 0.001..299, for a 300 second or 5 minute 
duration. The instantaneous RR interval signal is thus derived 
from Equations (9) and (10).  
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The sum of all previous RR intervals determines the time of 
the beat that is applied to Equation (11), where i is the  

beat number. Each sample is then repeated for the duration of 
the cycle length in 20ms sample intervals providing the 50 Hz 
sample rate expressed as follows:  
 

1....02.0,),()( +== iikiRRkRRcont
           (11) 

III. RESULTS 
Each example presented uses Daubechies p = 4 wavelet 

filters. Higher orders were examined with each set having 
similar results. The first set of results presented is based on the 
heart rate simulation previously described. The output is 
illustrated in Figure 4 for a parameter set with high and low 
frequencies of 0.2 and 0.1 Hz respectively with no phase 
variation applied.  A high frequency amplitude of A = 200 ms, 
B = 50% for a LF/HF ratio of 1/2 and C = 1000 ms is applied. 
Ectopic beats were inserted randomly where the RR interval 
would drop significantly indicating a high heart rate for one 
cycle, and increase significantly above the mean for one cycle. 
Figure 4 shows the RR interval sampled uniformly at 50Hz 
and decimated to 5Hz respectively for HRV spectral analysis. 
The following 2 signals illustrate the instantaneous RR 
interval followed by a set of wavelet coefficients from the 
highest frequency band. Figure 5 illustrates DWT coefficients 
for each band, where it is obvious band 1 effectively identifies 
ectopic beats. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

                               Fig. 4 Simulation with ectopic beats 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 5 Wavelet coefficients for 6 subbands 
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Fig. 6 Filtered and ectopic RR signals 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8 RR signal with DWT coefficients 
 

The traces illustrated in Figure 6 include the RR interval 
signal with ectopic beats inserted, before insertion, DWT 
filtered and interpolated signals respectively. All signals 
resemble the simulation with no ectopic beats inserted. These 
signals were fed through the spectral analysis routine of 
section 3 with the results presented in Figure 7. The first 
spectral plot is the RR signal with no ectopic beats added. The 
second spectrum is that of the DWT filter and third the 
simulated RR signal with ectopic beats and no filtering. The 
interpolated signal is not presented as it perfectly replaces 
simulated data. The degrading effects of ectopic beats on 
power spectral analysis can be seen from the third trace where 
there exists spectral leakage across the complete spectrum. 
This has the effect of greatly increasing the power in each 
frequency band. For instance, the LF band has increased from 
39.78 ms2 to 100.2 ms2 and the HF band has increased from 
186.84 ms2 to 249.5 ms2.  The second spectrum presented 
illustrates the ability of the DWT hard thresholding approach 
in removing these beats from the analysis. The power in LF 
band has increased from 39.78 to 46.17 ms2.  The HF band 
power has only increased by a negligible amount. A segment 
of heart rate data captured from the LifeShirt from a patient 
suffering from heart failure is illustrated 8. There exist 9  

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 7 Frequency spectra of simulated signals 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9 RR signal with filtering and interpolation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig.10 Frequency spectra of raw and filtered signals 
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ectopic beats in this segment. Large negative or positive 
wavelet coefficients, several times in excess of the baseline 
identify each ectopic beat. 
 The first subband, which is the high frequency detailed level, 
is used to identify ectopic beats. As it is the first subband and 
the first level of decomposition, its length is half the RR 
segment length. The ectopic beats are thus identified as twice 
the largest coefficient index and the proceeding index. 

The resultant signals from applying the linear interpolation 
algorithm, and the DWT thresholding approach are illustrated 
in Figure 9. It is clear both approaches have effectively 
filtered the appropriate beats. The resultant spectra from the 
filter outputs are shown in Figure 10. The first frequency 
spectrum is as expected with excessive spectral leakage 
created by the ectopic beats, and therefore the total spectral 
power is overestimated. The second spectrum demonstrates 
the output from the DWT threshold filter. As expected, the 
majority of spectral leakage is minimized, as is the total 
power. The third spectrum closely resembles that of the DWT 
with the exception that there is less power in the HF band. A 
more difficult signal to process is illustrated in Figure 11. 512 
beats are shown with an average RR interval of approximately 
600 ms. Furthermore the subject is ambulatory and there 
exists a non-stationary baseline. There exist 11 ectopic beats 
in this example which can all be clearly identified in the 
following trace where DWT coefficients of ± 50 of the 
previous beat is classified ectopic. These detected beats are 
filtered and interpolated with both techniques and illustrated 
in Figure 12. The two outputs look very similar where the 
DWT output has smoothed more beats. Whether or not the 
beats are ectopic is questionable, although would still impact 
spectral analysis somewhat. The spectra for each signal in 
Figure 12 are illustrated in Figure 13. The spectra in this case 
doesn’t appear to have had as much spectral leakage 
introduced by ectopic beats as the previous examples. With 
closer examination of the power in each frequency band, the 
LF band power in each example is comparable. The spectral 
leakage power in the HF band of the interpolated approach 
appears to have attenuated the most noise. 

IV. CONCLUSION 
The examples presented show the accuracy of the DWT’s 

ability to detect ectopic beats in the higher frequency 
subbands. This higher frequency component occurs as an 
ectopic beat generates a shorter cardiac cycle (coupling 
interval), followed by a longer cardiac cycle (post-
extrasystolic pause). Therefore, this detection technique is 
robust throughout the population. Although the DWT hard 
thresholding approach appears to adequately filter the ectopic 
beats from the analysis, it does, in some circumstances alter 
the characteristic of the natural sinus rhythmic beats adjacent 
to it. Although this approach is much better than nothing at 
all, it does have an impact on the resultant spectrum. This 
approach is acceptable for displaying and time-domain 
measures, but problematic for spectral measures. Linear 

interpolation has been shown to adequately replace the ectopic  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 11 RR interval with DWT coefficients 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 12  RR signal with filtering and interpolation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Fig. 13 Spectra of raw and filtered signals 
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beats with samples that can preserve the power spectrum. It is 
therefore concluded that the DWT detection algorithm with 
linear interpolation is a suitable automated combination for 
large datasets. 
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