
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:9, 2009

2265

Transportation Under the Threat of Influenza
Yujun Zheng,Qin Song,Haihe Shi,and Jinyun Xue

Abstract—There are a number of different cars for transferring
hundreds of close contacts of swine influenza patients to hospital,
and we need to carefully assign the passengers to those cars in order
to minimize the risk of influenza spreading during transportation. The
paper presents an approach to straightforward obtain the optimal solu-
tion of the relaxed problems, and develops two iterative improvement
algorithms to effectively tackle the general problem.

Keywords—Influenza spread; discrete optimization; stationary
point; iterative improvement.

I. INTRODUCTION

SEVERAL students were found to have probable human
swine influenza, and the school must transfer hundreds of

close contacts to hospital for observation. There are a dozen
cars of different capacities and with different sanitary and ven-
tilation conditions, for each of which we assign a “threatening
rate” thi and evaluate the risk of influenza spreading as:

Ti(xi) = thi(b
xi − 1) (1)

where b > 1, 0 < thi ≤ 1, and xi is the number of passengers
carried by car i. Suppose the maximum capacity of car i is ci
passengers, the number of cars is n and the total number of
passengers is m, and thus the problem to minimize the risk of
influenza spreading during transportation can be specified as
follows:

min fn(m) =
∑n

i=1
thi(b

xi − 1) (2)

s.t.
∑n

i=1
xi = m (3)

xi ∈ Z+, 0 < i ≤ n (4)
xi ≤ ci, 0 < i ≤ n (5)

Without losing generality, we assume that m <
∑n

i=1 ci.
Under the same conditions, the car with less thi should carry
more passengers, and thus we can also preprocess the problem
so that th = {th1, th2, ..., thn} is sorted in increasing order.
An obvious approach to the problem is to generate all subsets
of integers [1], [2] that satisfy the capacity constraints and
whose sum is m, and then using dynamic programming to
obtain a solution with the minimum objective function value,
which typically results in an algorithm that runs in O(mn)
time in the worst case [3].

In this paper we first present two relaxed versions of the
problem and show that they can be solved in polynomial time,
and then develops two algorithms that use iterative improve-
ment to work out the optimal solution for the general problem,
the effectiveness of which is demonstrated experimentally.

Y. Zheng, H. Shi, and J. Xue are with the Institute of Software and the
Graduate University of the Chinese Academy of Sciences, Beijing 100080,
PR China (e-mail: yujun.zheng@computer.org).

Q. Song is with the Department of Biotechnology, Beijing University of
Agriculture.

II. THE PROBLEM WITHOUT CAPACITY AND INTEGER
CONSTRAINTS

First we only consider the relaxed problem with objective
(2) and constraint (3), which is a nonlinear programming
problem (NLP). Note for n = 2 differentiating yields:

∂f2(m)

∂x1

=
∂(th1(b

x1 − 1) + th2(b
m−x1 − 1))

∂x1

= th1b
x1 ln b− th2b

m−x1 ln b

At the stationary point ∂f2(m)
∂x1

= 0, the optimal solution can
be directly obtained as:

x1 = (m+ logb
th2

th1
)/2 (6)

x2 = (m+ logb
th1

th2
)/2 (7)

f∗
2 (m) = 2(bmth1th2)

1/2 − th1 − th2 (8)

Such a result is scalable and we have the following theorem:

Theorem 1. The optimal solution of the relaxed NLP is as
follows:

xi = (m+ logb

∏n
i=1 thi

thn
i

)/n, 0 < i ≤ n (9)

f∗
n(m) = n(bm

∏n

i=1
thi)

1/n −
∑n

i=1
thi (10)

Proof (Mathematical induction). The theorem is trivial for
n = 1 and has been proved for n = 2. Next we assume
Equation (9) holds for n = k and thus have:

f∗
k (m)

=
∑k

i=1
thi(b

xi − 1)

=
∑k

i=1
thi(b

m

∏k
i=1 thi

thk
i

)1/k −
∑k

i=1
thi

= k(bm
∏k

i=1
thi)

1/k −
∑k

i=1
thi

Now for n = k + 1 it is obvious to conclude:

fk+1(m) = min {f∗
k (m− xk+1) + thk+1(b

xk+1 − 1)} (11)

Therefore we have:
∂fk+1(m)

∂xk+1

=
∂f∗

k (m− xk+1)

∂xk+1
+

∂(thk+1(b
xk+1 − 1))

∂xk+1

= (−1/k)k(bm−xk+1

∏k

i=1
thi)

1/k ln b+ thk+1b
xk+1 ln b

= (thk+1b
xk+1 − (bm−xk+1

∏k

i=1
thi)

1/k) ln b

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:9, 2009

2266

Let ∂fk+1(m)
∂xk+1

= 0 we get:

(thk+1b
xk+1)k = bm−xk+1

∏k

i=1
thi

⇔ (thk+1)
k

∏k
i=1 thi

= b(m−(k+1)xk+1)

⇔ logb
(thk+1)

k

∏k
i=1 thi

= m− (k + 1)xk+1

⇔ xk+1 = (m− logb
(thk+1)

k

∏k
i=1 thi

)/(k + 1)

⇔ xk+1 = (m+ logb

∏k+1
i=1 thi

(thk+1)k+1
)/(k + 1)

And the new optimal objective value is:

f∗
k+1(m)

= f∗
k (m− xk+1) + thk+1(b

xk+1 − 1)

= k(bm−xk+1

∏k

i=1
thi)

1/k

−
∑k

i=1
thi + thk+1b

xk+1 − thk+1

= k(
bmthk+1

∏k
i=1 thi

(bm
∏k+1

i=1 thi)k+1
)1/k

+thk+1
(bm

∏k+1
i=1 thi)

1/(k+1)

thk+1
−

∑k+1

i=1
thi

= k(bm
∏k+1

i=1
thi)

1/(k+1)

+(bm
∏k+1

i=1
thi)

1/(k+1) −
∑k+1

i=1
thi

= (k + 1)(bm
∏k+1

i=1
thi)

1/(k+1) −
∑k+1

i=1
thi

Thus the theorem is proven, which implies that the relaxed
problem can be directly solved in O(n) time (given that
logarithms and exponentials can be computed efficiently [4]).
�

III. THE PROBLEM WITHOUT CAPACITY CONSTRAINTS

Next we consider the relaxed problem with objective (2)
and constraint (3) and (4), which is a nonlinear integer
programming problem (NLIP). A general approach to the
problem consists of the following two stages:

1) Develop an initial solution;
2) Continually improve the solution by moving a passenger

from one car to another until the objective function
cannot be reduced further.

Suppose there are xi passengers in car i (xi ≥ 1) and xj

passengers in car j, moving one passenger from i to j will
result a change of the objective function as follows:

Δi,j (12)
= thi(b

xi−1 − 1) + thj(b
xj+1 − 1)

−thi(b
xi − 1)− thj(b

xj − 1)

= (b− 1)(thjb
xj − thib

xi−1) (13)

To ensure Δi,j < 0 we must have thjb
xj < thib

xi−1, or
xi − xj > 1 + logb

thj

thi
. On the other hand, the difference

between moving a passenger from i to j and that from i to k
is as follows:

Δi,j −Δi,k

= (b− 1)(thjb
xj − thib

xi−1)− (b− 1)(thkb
xk − thib

xi−1)

= (b− 1)(thjb
xj − thkb

xk)

which suggests the car with less thjb
xj should be preferably

chosen as the moving target.
To minimize the computational effort, we should start with a

solution as close to the optimum as possible, and the effective
result of above section provides a good start. The following
lemma demonstrates that the optimum of the NLIP is close to
that of the NLP:

Lemma 1. Let x = {x1, x2, ...xn} be the the optimal
solution of the relaxed NLIP and x0 = {x0

1, x
0
2, ...x

0
n} be that

of the relaxed NLP, then for any i (0 < i ≤ n) we have:

�x0
i � ≤ xi ≤ �x0

i 	 (14)

Proof. By contradiction we first assume there is an i such
that xi > x0

i +1, then there must be at least a j
= i satisfying
xj < x0

j . Therefore we have:

thjb
xj − thib

xi−1

< thjb
x0
j − thib

x0
i

= thj(
bm

∏n
k=1 thk

(thj)n
)1/n − thi(

bm
∏n

k=1 thk

(thi)n
)1/n

= 0

Thus we can always move a passenger from i to j to reduce
the objective function, which says x is not the optimal solution
of the problem.

Similarly, if there is an i such that xi < x0
i − 1, then there

must be at least a j
= i satisfying xj > x0
j and we can get

the same contradiction. �
Now we propose an efficient algorithm for the relaxed NLIP,

which starts with an initial solution in which xi = �x0
i � (2 ≤

i ≤ n) and x1 = m −∑n
i=2 xi, and continually moves one

passenger from x1 to an xi whose thib
xi is minimum and

Δ1,i < 0, as illustrated in Algorithm 1. Including the time
required for sorting [5], the running time of Algorithm 1 is
O(n logn).

Before going deep into the general problem with capacity
constraints, we should point out that, in many practical cases,
the solution produced by Algorithm 1 actually satisfies the
capacity constraints, given that there is typically no big differ-
ence between the cars’ capacities and there is always a certain
surplus of the total capacity.

IV. THE GENERAL CONSTRAINED PROBLEM

In this section we develop two algorithms for the general
version of the problem, both using the iterative improvement
approach based on heuristics indicated by Equation (12). The
first starts with a feasible solution and the second starts with
a probably infeasible solution.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:9, 2009

2267

Min-Threat-Trans(m,n, th, b)

begin
ps←∏n

i=1 th[i];
x[1]← m;
for i← 2 to n do // initial solution

x[i]← �(m+ logb
ps

(th[i])n)/n�;
IN-SORT(A, {x[i], th[i]});
x[1]← x[1]− x[i];

endfor;
A.InsertAt(0, {x[1], th[1]});
for i← 2 to n do // iterative improvement

if (A[i] < A[1]/b) then begin
A[1].x← A[1].x− 1;
A[i].x← A[i].x+ 1;

end
else return;

endfor;
end

Algorithm 1: The iterative improvement algorithm for the
minimum flu-spread risk problem without capacity con-
straints, where the procedure IN-SORT inserts an element
{x, th} into list A and keeps the list sorted in increasing
order of x[i] · bth[i] (0 < i ≤ |A|).

A. Starting with a Feasible Solution

The first general algorithm tries to fill the cars with small
threatening rate to get an initial solution, and then iteratively
moves a passenger from car i with maximum thib

xi to car
j with minimum thib

xi to yield the largest decrease of the
objective function, as suggested by Equation (12).

Based on same technique used in the above section, the
algorithm maintains thib

xi (0 < i ≤ n) in increasing order
in list A, and continually moves a passenger from the last
element to the first element of A until the objective function
cannot be reduced further, as illustrated in Algorithm 2.

Suppose that during the first stage k cars have been filled,
then the second loop of Algorithm 2 will execute r =∑k

i=1(ci − xi) times, and hence the total running time of
Algorithm 2 is O(n log n+ nr).

B. Starting with an Infeasible Solution

The second general algorithm starts with an initial solution
close to the NLP’s optimal solution described in Section II. If
the initial solution is feasible, we can employ Algorithm 1 to
produce the exact optimal solution for the problem, otherwise
we iteratively reduce the violation of constraints until the
solution becomes feasible. In detail, the cars are grouped into
two lists A and B, where A contains the cars whose xi exceeds
ci and B contains the cars with xi < ci; while A is not empty,
we move a passenger from the maximum element of A to the
minimum element of B, as illustrated in Algorithm 3.

Let k denotes the initial size of A, then the second loop of
Algorithm 3 will execute r′ =

∑k
i=1(xi − �x0

i �) times, and
the total running time of the algorithm is O(n logn+ nr′).

Min-Threat-Trans-Dec(m,n, th, c, b)

begin
m′ ← m; i← 1;
while m′ > 0 do // initial solution

if (c[i] < m′) then begin
x[i]← c[i];
m′ ← m′ − c[i];

end
else x[i]← m′;
IN-SORT(A, {x[i], th[i]});
i← i+ 1;

endwhile;
for j ← i to n do A.InsertAt(0, {0, th[j]});
while A[1] < A[n]/b do // iterative improvement

A[1].x← A[1].x+ 1;
A[n].x← A[n].x− 1;
IN-SORT(A,A[1]);
IN-SORT(A,A[n]);

endwhile;
end

Algorithm 2: The minimum flu-spread risk algorithm that
iteratively decreases the objective function.

Min-Threat-Trans-Inc(m,n, th, c, b)

begin
ps←∏n

i=1 th[i]; x[1]← m;
for i← 2 to n do // initial solution

x[i]← �(m+ logb
ps

(th[i])n)/n�;
if x[i] > c[i] then IN-SORT(A, {x[i], th[i]});
else if x[i] < c[i] then IN-SORT(B, {x[i], th[i]});
x[1]← x[1]− x[i];

endfor;
if x[1] > c[1] then IN-SORT(A, {x[1], th[1]});
else if x[1] < c[1] then IN-SORT(B, {x[1], th[1]});
while |A| > 0 do // iterative improvement

A[n].x← A[n].x− 1;
if A[n].x = A[n].c then A.RemoveAt(n);
else IN-SORT(A,A[n]);
B[1].x← B[1].x+ 1;
if B[1].x = B[1].c then B.RemoveAt(1);
else IN-SORT(B,B[1]);

endwhile;
end

Algorithm 3: The minimum flu-spread risk algorithm that
iteratively reduce the violation of constraints and increases
the objective function.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:9, 2009

2268

TABLE I
THE RANGES OF PROBLEM VARIABLES USED IN THE TEST CASES

Variable min max average
b 1.05 1.55 1.3
m 100 1500 800
n 5 20 10
thi 0.1 1 0.55
ci 10 100 25

C. Experimental Comparison of the Algorithms

Roughly speaking, the closer the optimum of the general
problem is to the optimum of the relaxed NLP, the more
efficient Algorithm 3 will be than Algorithm 2. However,
it is difficult to accurately estimate the algorithm efficiency
before we reach the optimal solution. In order to evaluate the
algorithm efficiency and find some guidelines for algorithm
selection, we randomly generate 90 problem instances and
collect the iteration times of the algorithms. Table 1 presents
the ranges of variables used in these test cases.

The experimental result shows that there are 9 cases (which
are deemed to be reasonably practical) can be directly solved
by Algorithm 1; among the remaining 81 cases, there are
39 cases on which the Algorithm 3 is more efficient than
Algorithm 2, as illustrated in Fig 1 (a). Let r2 be the iteration
times of Algorithm 2 and r3 be that of Algorithm 3, we get
that the average values of r2/m and r3/m are 28.2% and
30.1% respectively, which demonstrates that both the algo-
rithms overwhelm the basic dynamic programming approach;
moreover, the average value of min(r2, r3)/m is 23.3%, which
states that the appropriate algorithm selection will lead to a
significant performance improvement.

Since the iteration times of the algorithms are highly de-
pended on the difference of thib

xi between different cars, here
we compute p = (

∑n
i=1 thib

m/n)/n and δ =
∑n

i=1(thib
ci −

p)2/n for each problem instance, and evaluate the algorithm
performance over the instances based on δ. Fig 1 (b) illustrates
the changes of algorithm performance (evaluated by r/m) with
respect to logb δ, from which we can see that Algorithm 3 is
typically efficient than Algorithm 2 if logb δ < 95, which gives
an useful criterion for selecting the appropriate algorithm.

V. CONCLUSION AND DISCUSSION

The paper presents the problem of minimizing the risk
of influenza spreading during transportation and develops an
efficient algorithmic approach to the problem. This problem
comes from our recent work in contingency planning for
influenza epidemics and is specified based on the dynamic
models of epidemic spreading [6], [7]. For other epidemic
diseases (such as bird influenza, malaria, encephalitis, etc), we
can adjust the value of the constant b to match their spreading
models as well as possible. Furthermore, the formulation
can also be modified or extended to represent problems in
other domains such as freight transportation (e.g., [8], [9]),
vehicle routing [10], resource allocation, and network design.
For example, suppose a large amount of materiel needs to
be transported to the battlefield through several paths with
different threatening rate, and the risk of being attacked
increases exponentially with the amount of materiel; Such a

46.66%

43.33%

10%
Alg1

Alg2

Alg3

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

24

34

45

59

70

80

10
0

12
0

14
4

16
7

19
9

26
5

29
8

34
2

40
1

48
5

55
0

Alg2

Alg3

logb�

r/m

Fig. 1. Experimental comparison of the algorithms.

military transportation problem can be formulated exactly the
same way and be solved by the same algorithms proposed in
this paper.

According to the actual demands of epidemic prevention, we
are extending our problem model by a) considering the condi-
tion that the total capacity is not enough, and thus additional
rounds of transportation are needed; b) adding more realistic
constraints, e.g., some passengers must be in the same car;
c) including more objectives, e.g., to minimize transportation
time and costs, and thus transform the problem into a multi-
objective programming problem. Ongoing efforts also include
developing polynomial-time approximate algorithms for the
problem and its extensions.

ACKNOWLEDGMENT

The work was supported in part by grants from National
Natural Science Foundation (No. 60773054) of China.

REFERENCES

[1] S.G. Akl, “A comparison of combination generation methods”, ACM
Tran. Math. Soft., vol. 7, 1981, pp. 42–45.

[2] D.R. Baronaigien, F. Ruskey, “Efficient generation of subsets with a
given sum”, J. Combin. Math. Combin. Comput., vol. 14, 1993, pp.
87–96.

[3] S. Martello, P. Toth, “A mixture of dynamic programming and branch-
and-bound for the subset-sum problem”, Management Sci., vol. 30, 1984,
pp. 765–771.

[4] K. McCurley, “The discrete logarithm problem, In: Cryptology and
Computational Number Theory”, Proceedings of Symposia in Applied
Mathematics, vol. 42, 1990, pp. 49–74.

[5] M. Ben-Or, “Lower bounds for algebraic computation trees”, In: 15th
Annual ACM Symposium on theory of Computing, ACM Press, New
York, 1983, pp. 80–86.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:9, 2009

2269

[6] N. Noah, M. O’Mahony, Communicable Disease - Epidemiology and
Control, John Wiley, New York, 1998.

[7] Z. Ma, J. L, “Basic Knowledge and Developing Tendencies in Epi-
demic Dynamics”, Mathematics for Life Science and Medicine, Springer
Berlin-Heidelberg, 2007, pp. 5–49.

[8] T.G. Crainic, J.M. Rousseau, “Multicommodity, multimode freight
transportation: A general modeling and algorithmic framework for the
service network design problem”, Transportation Research Part B:
Methodological, vol. 20, 1986, pp. 225–242.

[9] M. Zhang, G.S. Liu, L.K. Wu, Y.H. He, “Model and algorithm for bilevel
transportation problem”, Acta Mathematicae Applicatae Sinica, English
Series, vol. 31, 2008, pp. 17–23.

[10] T.K. Ralphs, L. Kopman, W.R. Pulleyblank, L.E. Trotter, “On the
capacitated vehicle routing problem”, Math. Prog., vol. 94, 2003, pp.
343–359.

