
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3435

Abstract—The ability of information systems to operate in

conjunction with each other encompassing communication protocols,
hardware, software, application, and data compatibility layers. There
has been considerable work in industry on the development of
component interoperability models, such as CORBA, (D)COM and
JavaBeans. These models are intended to reduce the complexity of
software development and to facilitate reuse of off-the-shelf
components. The focus of these models is syntactic interface
specification, component packaging, inter-component
communications, and bindings to a runtime environment. What these
models lack is a consideration of architectural concerns – specifying
systems of communicating components, explicitly representing loci
of component interaction, and exploiting architectural styles that
provide well-understood global design solutions. The development
of complex business applications is now focused on an assembly of
components available on a local area network or on the net. These
components must be localized and identified in terms of available
services and communication protocol before any request. The first
part of the article introduces the base concepts of components and
middleware while the following sections describe the different up-to-
date models of communication and interaction and the last section
shows how different models can communicate among themselves.

Keywords—Interoperability, component packaging,

communication technology, heterogeneous platform, component
interface, middleware.

I. INTRODUCTION

OMPONENT-BASED software development is gaining
recognition as the key technology for the construction of

high quality, evolvable, large software systems in timely and
affordable manner. In this new setting, interoperability is one
of the essential issues, since it enables the composition of
reusable heterogeneous components developed by different
people, at different times, and possibly with different uses in
mind. Currently most object and component platforms, such
as Common Request Broker Architecture (CORBA),
Distributed Component Object Model (DCOM), or Enterprise
Java Beans (EJB) already provide the basic infrastructure for

M. Madiajagan is with the BITS, Pilani – Dubai Campus, Knowledge

Village, Dubai, P.O.Box: 500022, United Arab Emirates (phone: 00971-04-
3664575, fax: 00971-04-3664580; e-mail: jagan@bitsdubai.com).

B. Vijayakumar is with the BITS, Pilani – Dubai Campus, Knowledge
Village, Dubai, P.O.Box: 500022, United Arab Emirates. Tel:00971-04-
3664575, fax:00971-04-3664580, vijay@bitsdubai.com).

component interoperability at the lower levels, i.e., they sort
out most of the “plumbing” issues. However, interoperability
goes far beyond that; it also involves behavioral compatibility,
protocol compliance and agreements on the business rules.
Information systems largely involve networking these days.
The development of complex business applications is now
focused on an assembly of components available on a local
area network or on the net. These components must be
localized and identified in terms of available services and
communication protocol before any request. This paper
presents the most common technologies that allow
heterogeneous and distributed software systems to collaborate.
The first part of the paper introduces the base concepts of
components and middleware while the following sections
describe the different up-to-date models of communication
and interaction and their use in industrial applications. The
last section shows how different models can communicate
among themselves. This paper deals with the basic concepts
related to component interoperability, with special emphasis
in the syntactic, protocol and operational specifications of
components. The main goal is to point out the existing
problems, survey the current solutions and to point out how
they address those problems, and to draw attention towards
some of the still open issues and challenges in this interesting
research area.

II. RELATED WORK
Component-Based Software Development is an emergent

discipline that is generating tremendous interest due to the
development of plug-and-play reusable software, which has
led to the concept of ‘commercial off-the-shelf’ (COTS)
components [1]. In lieu of coding components, many CBS
developers assume they can just “plug in” COTS products.
They assume using COTS products will shorten their
programming and testing effort, with little other lifecycle
process effect.
COTS product has the following features:

• sold, leased, or licensed to the general public;
• offered by a vendor trying to obtain profit from it;
• supported and evolved by the vendor, who retains

the intellectual property rights;
• available in multiple, identical copies; and
• used without source code modification.

Interoperability in Component Based Software
Development

M. Madiajagan, and B. Vijayakumar

C

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3436

New process drivers flow both from this COTS product
definition and from the consequences of assembling systems
from COTS products. These new process drivers are:

• CBS development is an act of composition.
• The realities of the COTS marketplace shape CBS

development.
• CBS development occurs through simultaneous

definition and trade-off of the COTS marketplace,
system architecture, and system requirements.

COTS-based system development involves composition and
reconciliation, whereas custom system development is an act
of creation. Custom development starts with the system
requirements and creates a system that meets them; the
engineers are producers. However, COTS-based system
development starts with a general set of requirements and then
explores the marketplace’s offerings to see how closely they
match the needs; the engineers are consumers, who then
integrate the products they buy into a system that meets the
need. The nature, timing, and order of activities performed
and the processes used differ accordingly. The approach to
system development for COTS-based systems requires a
fundamental change, as shown in Fig. 1.

Fig. 1 COTS-based Systems

Enterprise software systems are becoming more and more

complex. Applications have changed from simple stand-alone
programs in a homogeneous environment to highly integrated
and distributed systems in heterogeneous environments. Over
the last ten years, the need for web-enabled systems has led to
additional requirements. In 1990’s there was a need for
connecting the whole software system of an enterprise. Now
the web environment results in the requirement to
interconnect the software systems of enterprises to take
advantage of the great business opportunities from the Net.
The resulting Information software System (IS) plays a key
role in enterprise; it is based on three fundamental parts: a set
of data, a set of software processing and, a set of end-user
presentation channels. The main goal of component based
software is to reduce development costs and efforts, while
improving the flexibility, reliability, and reusability of the

final application due to the (re)use of software components
already tested and validated.

This approach moves organizations from application
development to application assembly. Therefore, one of the
key issues of building applications from reusable components
is interoperability. Interoperability can be defined as the
ability of two or more entities to communicate and cooperate
regardless of differences in the implementation language, the
execution environment, or the model abstraction.
Traditionally, two main levels of interoperability have been
distinguished: the signature level (names and signatures of
operations), and the semantic level (the “meaning” of
operations). In the first place, syntactic interoperability is now
well defined and understood, and middleware architects and
vendors are trying to establish different interoperation
standards at this level. They have given birth to the existing
commercial component models and platforms such as
CORBA, EJB, or DCOM. However, all parties are starting to
recognize that this sort of interoperability is not sufficient for
ensuring the correct development of large component based
applications in open systems. On the other hand, the existing
proposals at the semantic level provide component interfaces
with information about their behavior. Behavior indicates how
software responds to external events. The formal specification
of the system can be expressed in term of model-based
specification. Model-based techniques model the system using
mathematical constructs such as sets and functions. The
operations in a model-based specification are defined using
pre- and post-conditions on the system state. Although much
more powerful than mere signature descriptions, dealing with
the behavioral semantics of components introduces serious
difficulties when applied to large applications. In fact, most of
the formal notations have been around for several years
already, and they recurrently appear whenever there is a new
prototype, which can be Abstract Data Types (ADTs), objects,
or components. The use of formal methods for proving
“semantic correctness” of components in complex
applications remains an active area of research. This paper
also considers interoperability at the protocol level, which
deals just with the partial order between the components’
exchanged methods, and the blocking conditions that rule the
availability of the components’ services. This level, firstly
identified by Yellin and Strom, provides more powerful
interoperability checks than those offered by the basic
signature level. Of course it does not cover all the semantic
aspects of components, but then it is not weighed down with
the heavy burden of semantic checks. At the protocol level,
the problems can be more easily identified and managed, and
practical (tool-based) solutions can be proposed to solve them.
CAPE-OPEN (CO) is a key technology for interoperability
and integration of process engineering software components.
IBM Glossary (2004) defines interoperability as the capability
to communicate, execute programs, or transfer data among
various software units. This paper analyzes software
interoperability for Component based software applications.
3. Software Architecture and Technologies:

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3437

The different steps of software system development require
one to view the system with respect to several individual
perspectives such as those of end-users, analysts, designers,
developers, etc. The software architecture is a good target as a
candidate to manage these different points of view along the
system lifecycle [2]. UML authors also recommend making
use of a development process, which is architecture-centric.
According to Booch et al. (1998), software architecture
encompasses the set of significant decisions about the
organization of a software system such as:

– selection of the structural elements and their
interfaces by which a system is composed, behavior
as specified in collaborations among those elements;

– Composition of these structural and behavioral
elements into a larger subsystem and architectural
style that guides this organization.

Software system history can be distinguished as follows:
centralized architecture in 70’s, decentralized architecture in
80’s, distributed architecture in 90’s and web architecture in
2000’s. The use of web technologies has allowed more
complex functionalities to be offered on the net; from
information publishing to heterogeneous application
integration. Web (enabled/distributed) architecture is based on
multi-tier architecture that separates the presentation, business
logic and data. We use the architectural vision to identify and
place the different Information Technologies to select for
building the system [3]. This approach concerns not only the
physical view but also the logical view (e.g. code
organization, application design.). The basis for web
architecture is shown in Fig. 2.

 Fig. 2 Web Architecture Basis

The presentation tier allows the graphical interaction with

the end-users over the network using a thin client (the
browser) or a rich client (a dedicated GUI). The thin client
presentation is performed using web browser-HTML (with
script languages and XML if any). The communication with
the business logic tier is based on HTTP-TCP/IP. Web
dynamic technologies such as PHP, Microsoft ASP and Java
JSP do not differ from this principle since these pages are
compiled and executed on the web server side to generate just-
in-time HTML pages displaying the graphical interface of e-

business or other applications. On the other side, the rich
client presentation is developed with usual Object-Oriented
Programming (OOP) languages such as Java, VB, C++, C#,
Delphi, and the communication is carried out by protocols
from middleware technology such as CORBA-IIOP,
(D)COM, .NET Remoting, Java RMI-JRMP, XML-HTTP and
SOAP according to component based programming. The
middleware technology is the basic mechanism by which
software components transparently make requests to and
receive responses from each other on the same machine or
across a network.

The business logic tier encloses the application logic
representing the enterprise know-how and rules. Usually this
side is developed according to a component-based approach
with Unified Modeling Language. This approach is based on
advanced component models such as EJB from SUN / Java
community, COM, DCOM and .NET from Microsoft,
CORBA/CCM from OMG or Web services from W#C. These
components are mainly implemented following an OO
Programming and component intercommunication is
performed by middleware inner protocols. The components
run within a software framework called application server that
provides a set of technical services such as transaction,
identification, load balancing, security, data access, and
persistence.

The data tier has the data persistence service with relational,
XML and object databases generally using SQL to manage
data. In addition to usual data techniques, work is being done
on XML-enabled and distributed data management
(SQLXML). Table I categories web architecture into six
groups.

TABLE I
WEB ARCHITECTURE CATEGORIZATION

Technology Protocol / Languages Functions

Modeling
Technology

Internet Protocol:
TCP/IP,HTTP; XML (data
model)

Modeling for
object based
systems

Communicatio
n technology

Internet Protocol:
TCP/IP,HTTP; Internet Inter -
ORB Protocol (IIOP) for
CORBA; DCOM, .NET
Remoting, Java RMI-JRMP
(Java Remote Method
Protocol), SOAP(Simple
Object Access Protocol) ,
Specific definition
programming language such as
OMG IDL for CORBA,
Microsoft IDL for COM, Java
interface for RMI and WSDL
for web services.

Data transmission
over Internet

Implementatio
n Technology

Internet Protocol: TCP/IP, HTTP;
Internet Inter -ORB Protocol
(IIOP) for CORBA; DCOM, .NET
Remoting, Java RMI-JRMP (Java
Remote Method Protocol),
SOAP(Simple Object Access
Protocol); Object-oriented
programming (Java, C++, Eiffel,
C#), Web Programming (HTML,
XML, ASP, JSP, PHP, PERL).

Coding using
object-oriented
web programming
languages.

Packaging
Technology

Internet Protocol: TCP/IP,
HTTP; Internet Inter -ORB
Protocol (IIOP) for CORBA;

This deals with
the creation,
management and

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3438

DCOM, .NET Remoting, Java
RMI-JRMP (Java Remote
Method Protocol), SOAP
(Simple Object Access
Protocol); EJB, (D)COM,
.NET-Programming languages.

destruction of the
business
component. with
this technology,
the component
developer no
longer needs to
write
“technical”code
that handles
transactional
behavior, security,
database
connection
pooling.

Bridging
Technology

Internet Inter -ORB Protocol
(IIOP) for CORBA; DCOM,
.NET Remoting, Java RMI-
JRMP (Java Remote Method
Protocol), SOAP(Simple
Object Access Protocol);
COM-Java RMI, EJB-.NET

Bridging
technology allows
one to extend the
aptitude of a
system to
interoperate
between outer
technologies.

Memory
Technology

Internet Protocol: TCP/IP,
HTTP; relational, object, XML
data base,
SQL

Provide shared
controlled access
to schema
information.

In order to develop such modern software applications and

systems, technology selection involves many criteria. One
main issue is to know if the technology is an (open) standard
technology or proprietary technology. Open standard
technologies are developed by software engineering from
IT/software companies who collaborate within “neutral”
organizations such as W3C, OASIS and OMG in accordance
with a standardization process. It is worth noting that this
trend, issued from web philosophy, is also present in process
and software engineering field. Open standard technologies
are freely distributed data models or software interfaces. They
provide a basis for communication and common approaches
and enable consistency [4], resulting in improvements in
developments, investment levels and maintenance. Clearly,
the common effort to develop IT standard or domain oriented
standard and its worldwide adoption by a community can be a
source of cost reduction because not only is the development
cost shared but also the investment is expected to be more
future-proof. Open computing promises many benefits:
flexibility/liveliness, integration capability, software editor
independence, low development cost and adoption of
technological modernization. It is also possible to build
Information System from enterprise software especially for
enterprise management. Enterprise Resource Planning (ERP),
Enterprise Application Integration (EAI) and portal
applications can provide build-in solutions that need to be
tailored to enterprise framework and requirements. These
solutions, open source or commercial, involve standard
technologies and yielding web architecture. The following
sections deal with component based development technologies
for software interoperability unambiguously communication,
packaging and bridging technologies.

III. OVERVIEW OF COMMUNICATION TECHNOLOGY
Components Class and Interfaces:
An interface, a key element for middleware technology, is a

collection of possible functions used to specify through its
operations the services of a software unit. Depending on the
selected middleware technology, interfaces are developed with
a specific definition programming language such as OMG
IDL for CORBA, Microsoft IDL for COM, Java interface for
RMI and WSDL for web services. A class is an object-
oriented concept. It describes a set of shared objects and
belongs to the implementation step. An object is an instance of
a class. An object satisfies an interface if it can be specified as
the target object in each potential request described by the
interface. It belongs to the implementation step. However this
object is distinct from the other usual objects since it collects
the remote calls. The development of distributed software
does not imply the choice of an actual object-oriented
language (commonly C++, VB and Java) since middleware’s
such as COM and CORBA introduce the notion of pseudo-
objects. The component is a software unit that encapsulates
the implementation of business process logic.
Sessions R. stresses the difference between component and
object technology, the former being a packaging and
distribution technology, focusing on what a component can
do, while the latter is an implementation technology, focusing
on how a component works [5]. Objects and components are
software entities; objects are typically fine-grained units,
interact in the same computing process while components are
rather universal grained units, and are available outside their
own process with respect to interface definitions. They are
issued from different software design. The difference between
these two states is clearly identified in the CAPE-OPEN
standard from CAPE-OPEN-Laboratory Network. A CAPE-
OPEN accommodating component is a piece of software that
includes the supplier proprietary codes—objects or not—
which recognize or/and use CAPE-OPEN interfaces. The
communication between CAPE-OPEN component instances is
defined unambiguously by the CAPE- OPEN interfaces [6]. In
this case, the middleware technologies are CORBA and COM.

Middleware Principles:
Component based applications consist of several pieces of

software, which are executed independently and reside on the
same host or on remote hosts over a network such as intra and
Internet. There is a need for application integration and so for
component communication through well-defined interfaces.
Middleware is a set of software that allows and organizes
communication and information exchange between client
component and server component. Figure 3 shows this
technology as a universal communication bus, the “glue” of
any IS, for integrating the different enterprise applications. It
relies on a basic client-server communication model adding a
key element; the interface defined in terms of Interface
Definition Language (IDL). A middleware solution provides
mechanisms for interface definition and communication as
well as additional services easing the use and implementation

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3439

of component based software. The middleware
interoperability protocol defines how the components
communicate which each other. It defines marshalling
process, how the data structures (integer, real, string.) can be
translated into network messages. There are three kinds of
middleware technology: Message Oriented Middleware
(MOM), Remote Procedure Call (RPC) such as SOAP and
Object-Oriented (OO). The interface design of OO
middleware follows the object-oriented paradigm. At present
the OO middleware solutions are (D)COM and .Net Remoting
from Microsoft, CORBA from OMG and RMI from
Java/SUN. COM, CORBA and SOAP are detailed in
following sections. All communication between software
components is handled by middleware technology. Let us see
the different alternatives for inter-system communication
technologies e.g. how our system could process requests
between software components. As a first approach, we
distinguish two ways for exchanging information: the data
model and Application Programming Interface (API).
Normally, these methods are used in Information Systems
based on open computing architecture. With the data model,
we can use point-to-point software integration and file
format/database integration. However, this static
asynchronous communication is not appropriate to systems
that use intensive integrated calculations. Indeed the
performance penalty of managing physical files can be high
and can prevent this approach being effective for exchanging
information. Therefore, interoperability can be achieved by
API for carrying out inter-communication processes. We can
identify two kinds of API technologies that are commonly
used in any IS project, tightly coupled and loosely coupled
middleware [7].

Fig. 3 Middleware and client/server model

– Tightly coupled middleware technology: this

technology requests that software components have a
close relationship. Typically, this means that the
components are built on identical middleware. OO
middleware are typical examples. Here the
components are closely linked by implementation
dependence. For example, a COM component can
interoperate with a COM component on Windows.

However, non-trivial solutions exist to break this
tightly coupling such as bridging technologies.

– Loosely coupled middleware technology: software
components do not need to share the common
technology platform and they can be deployed easily
over the web. The components are loosely coupled
by implementation independence. The web is based
on this kind of protocol with HTML/HTTP. In this
field, the emerging industry standard for loosely
coupled inter-communication process is SOAP.

Marshalling:
An important notion for the API model is marshalling as

remarked previously. Because distributed systems are
heterogeneous (i.e. non-uniform hardware, operating systems,
etc.) the exchanges of data between different components
must adhere to the same conventions with respect to the
internal encoding of numeric data (little endian, big endian),
to the encoding of data over a network (Unicode strings).
Marshalling is the mechanism that ensures that the parameters
of a method call are properly passed between the caller of the
method and the callee (i.e. the code that implements the
method).

Implementation of Components:
The development of software that involves components is

known as component based software engineering [8]. This is
special case of object-oriented software engineering, and
development techniques and methodologies apply here.
Object oriented software development methodologies exist
and the implementation of software components benefit from
the use of these methodologies e.g. unified process [9]
discusses unified process applied to COTS, iterative models
for components integration [10]. In this paper, we address the
particular problem of the implementation of software
components. The main idea in components is to identify
business objects that correspond to specialized activities, such
as modeling, thermodynamics, numerical resolution, control
and advanced control. Specialized engineers are developing
new algorithms inside specialized components that implement
interfaces dedicated to the corresponding domain. Each
component can evolve independently and remain passive as
long as it preserves the behavior of interfaces. The use of
UML (Booch et al., 1998) as a modeling language is the
central point of software engineering tools. Some processes
for software development employ standard use of UML and
tools to develop software of high quality with an iterative
lifecycle. UML use cases are good examples to describe
project requirements.

The analysis is done using class diagrams with definition of
high-level classes, packages and interfaces for components.
The developer has a global view of the classes and packages.
Classes can implement different levels of complexity and
heterogeneous environment. The development can be iterative
due to the use of components. Application team (like database
search, computational problems.) develops application classes

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3440

and IT team for communication, management of middleware
data types and memory allocation, develops technical classes.
This separation is natural with UML class diagram. The use of
middleware types and structures is very complex and has to be
developed by a specialist IT team in specific technical classes.
UML CASE (Computer Aided Software Engineering) tools
enhance the capacity for changes in round-trip engineering.
This is always important to have an up-to-date UML model.
Generation of analysis and design documents can be done
from this model and the class source code. The round-trip
functions are essential for traceability quality requirements.
The framework of a modern CASE tool is able to handle links
with tools for software development:
Editor of source code;
– Wizard of code environment, such as wizard to generate
classes for Microsoft COM interfaces;
– Configuration management tool.
Thus component based software development and UML
modeling allow efficient cooperation of applicative and IT
teams in an iterative lifecycle process.

IV. COMMUNICATION TECHNOLOGIES BY DATA MODEL
Inter-application communication by data model requires the

definition of a standard data format, because the effective
representation of the data is the heart of this model. In order to
be adopted by major actors of application development, such a
format should be standard, robust and open (i.e. can be easily
tailored to specific business needs). The W3C consortium
released the XML specification to address this problem.

The XML Language:
EXtensible Markup Language (XML) is a simple, very

flexible text format derived from Standard Generalized
Markup Language (SGML). Originally designed to meet the
challenges of large-scale electronic publishing, XML from
W3C is also playing an increasingly important role in the
exchange of a wide variety of data on the web and elsewhere.
XML is an extensible file format because it is not a fixed
format like HTML (a single, predefined markup language).
Instead, XML is actually a meta-language—languages for
describing other languages—, which can be specialized to
meet the needs of a particular domain, like scientific or
business domains [11]. XML targets web development, due to
its syntax being close to the syntax of HTML, thus providing
natural transformations to produce web documents, but also
targets other computer areas, such technical data handling,
knowledge management. XML files are based UNICODE,
which provides consistent representation whatever the
language of the writer of the file and its reader.

A DTD (Document Type Definition) is a formal description
in XML declaration syntax of a particular type of document. It
sets out what names are to be used for the different types of
element, where they may occur, and how they all fit together.
DTD can be inline directly in an XML file, as well as being
referenced as an external resource, that may be shared by
different files. Given a DTD, the XML parser that reads the

document, thus avoiding additional verifications of the
document, can directly enforce the validity of a XML
document. An XML schema is another language that
expresses syntax constraints on XML files, but instead of
DTD, this language itself is based on a XML-like syntax.
XML files contain data along with enclosing tags describing
the semantics of the data; these files can be processed in order
to transform the structure of the file. XSL (eXtensible
Stylesheet Language) aims at easy transformation of XML
files into files of different format, XML compliant or not.
XSL is a functional language that associates to the elements of
the input XML files a set of transformations of the data
contained in the input file. One of the main use of XSL
language is to transform XML files containing technical data,
for example a list of data, into a more user friendly
presentations, for example a table containing exactly one data
per line, with associated color set depending on the nature of
the data, and displayed on a standard internet browser. The
XSL Transformation Architecture is shown in Fig. 4.

Fig. 4 XSL Transformation

The business application produces an XML compliant data

file, which can be used by other, domain specific, applications
or by a generic tool (like a browser) which can produce a user
friendly view of the data contained in the input file, with the
help of business standard style sheet.

XML Specializations:
Since XML is a meta-language, it gave birth to other

languages, which are dedicated to particular business
domains. Amongst the many specializations of XML, we can
enumerate:

– SVG is an XML sub language that is used nowadays to
 specify vector graphics and render them in commercial
 browsers.

– XMI from OMG is an XML language that can be
used to describe UML entities, such as Classes,
diagrams, relationship, etc.

– MathML from W3C is an XML language for
mathematical expressions.

V. PACKAGING TECHNOLOGY
Middleware components run within a controlled runtime

environment provided by the server editor. This packaging
technology deals with the creation, management and
destruction of the business component. With a technology, the
component developer no longer needs to write “technical”
code that handles transactional behavior, security, database

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3441

connection pooling, because the architecture delegates this
task to the server supplier. These techniques are now widely
used in network solutions and this section describes the
different technologies.

EJB, Java Community Technology:
Enterprise JavaBeans:
Enterprise Java Bean (EJB) proposes a high-level approach

for building distributed systems. It allows application
developers to concentrate on programming only the business
logic, while removing the need to write all the common code
required for any multi-tier application development scenario
[12]. For example, the EJB developer no longer needs to write
code that handles transactional behavior, security, connection
pooling or threading. In essence, EJB is a server component
model for Java and is a specification for creating server-side,
scalable, transactional, multi-user, and secure enterprise-level
applications. EJB can be deployed on top of existing
transaction processing systems including traditional
transaction processing monitors, web servers, database
servers, application servers.

Benefits of Using EJB:
In multi-tier architecture, it does not matter where the

business logic is. With EJB, business logic can reside on any
server, while adding additional tiers if necessary. The EJB’s
containing the business logic are platform-independent and
can be moved to a different, more scalable platform if
necessary. An EJB can move from one platform to the other
without “any” change in the business-logic code. A major
highlight of the EJB specification is the support for ready-
made components. This enables one to “plug and work” with
off the- shelf EJB’s without having to develop or test them or
to have any knowledge of their inner workings.

EJB Communication:
RMI is used as communication protocol for EJB clients.

However, EJB may provide CORBA/IIOP protocol for a
robust transport mechanism and pure CORBA clients can
access EJB as EJB clients. Currently, a highlight of OMG’s
CORBA Services is the wide range of features they provide to
an enterprise application developer. In the future, rather than
trying to rewrite these services, EJB server vendors may
simply wrap them with a simplified API, so EJB developers
can use them without being CORBA experts.

Java 2 Platform, Enterprise Edition (J2EE):
The Java 2 Platform, Enterprise Edition (J2EE) is a set of

coordinated specifications and practices that together enable
solutions for developing, deploying, and managing multi-tier
server-centric applications. Building on the Java 2 Platform,
Standard Edition (J2SE) the J2EE platform adds the
capabilities necessary to provide a complete, stable, secure,
and fast Java platform to the enterprise level. It significantly
reduces the cost and complexity of developing and deploying
multi-tier solutions. Enterprise Java Beans are part of the
J2EE platform but the platform provides also many other key

technologies, for example complete web services support.

.NET, Microsoft Technology:
The Microsoft response to J2EE is called .NET, and

provides a set of standard components, languages, etc., aimed
at the development of business applications [15]. The different
elements are:
– The CLR (Common Language Run-time) is the mechanism
that allows every compliant language to interoperate closely
(objects defined in one language can be used in another one).
Languages such as C#, VB.NET, can be compiled “on the fly”
into Intermediate Language (IL). The resulting code is called
managed code because the IL provides services and concepts
that help the execution of such code (for instance, garbage
collecting to prevent memory leaks, sandboxing to prevent
malicious code being executed, etc.). On the other hand, CLR
also enables the execution of unmanaged code, letting the
global security policy of the virtual machine decide if it can be
allowed. The CLR is the equivalent of Java virtual machine,
the IL of the Java byte code.

.NET common classes are a set of common classes that are
provided by the framework and that ease the enterprise
application development. These classes are dedicated to
management of files and can be considered as a replacement
for Microsoft foundation classes.

ASP .NET provides classes used during Active Server
Pages (ASP) creation, enabling the execution of C# code
within HTML pages.

.NET remoting is the .NET middleware technology that
handles the deployment of distributed applications in NET
[13, 14] compares it to web services.

The .NET and J2EE architectures are very similar, each
having its advantages, and its respective defaults. The key
technology is the programming language, i.e. C# for
Microsoft .NET and Java for EJB. These object oriented
languages are similar in scope (simplified OO languages), run
on virtual machines and thus are naturally portable on
different architectures (Windows CE, XP for .NET, and all
UNIX flavors for Java).

CCM, OMG Technology:
CORBA Component Model (CCM) is a specification that

focuses on the strength of CORBA as a server-side object
model. It concentrates on issues that must be addressed to
provide a complete server side middleware component model.
It can be described as a cross-platform, cross language
superset of EJB. The CCM gives developers the ability to
quickly build web-enabled enterprise scale applications while
leveraging the industrial strength of CORBA. Tight
integration with EJB advantages CORBA’s cross platform
and multiple-language capabilities. The CCM is part of the
CORBA 3.0 specification [16]. It extends the CORBA object
model by defining features and services in a standard
environment that enable application developers to implement,
manage, configure and deploy components that integrate with

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3442

commonly used CORBA services. These server-side services
include transactions, security, persistence and events.

Web Services, W3C Technology:
Web technologies are more and more used for application-

to-application communication as explained in previous
sections. At first, software suppliers and IT experts promised
this interconnected world thanks to the technology of web
services. Web services propose a new paradigm for distributed
computing [17] and are one of today’s most advanced
application integration solutions [18]. They help business
applications to contact a service broker, to find and to
integrate the service from the selected service provider.
However, even if the idea of web services has generated too
many promises, web services should be viewed for now as a
part of a global enterprise software solution and not as a
global technical solution. In a project, web services can be
used within a general architecture relying on Java EJB or on
Microsoft’s .NET framework [19].

VI. BRIDGING TECHNOLOGY
Above we dealt with interoperability features within a

particular inner technology. Bridging technology allows one
to extend the aptitude of a system to interoperate between
outer technologies. Two bridges are illustrated, given that
SOAP and web services, as noted previously, may play the
role of connector. Enterprises are characterized by an
organization networked through their information system in
which all the elements have to interact. This results in an
increasing dependence with regard to information
technologies for interoperability. Corresponding multi-tier
architecture information systems are today built over
advanced EJB or .NET component frameworks, themselves
relying on middleware technologies such as CORBA, RMI
and (D)COM. Initially EJB technology is multi-system and
mono-language (Java) while .NET technology is mono-system
(Windows) and multi-language. CCM aims at proposing a
multi-system and multi-language technology. Solutions exist
to “unlock” EJB and .NET. For example Common Language
Infrastructure (CLI) and C# programming language from
.NET are now standardized by ISO. Implementations on e.g.
Linux are available. In addition, web services and SOAP can
give many benefits. Andrews predicts dramatic changes in the
web services market for 2006, and announces a new class of
business applications called “service-oriented business
applications” [20]. The merging of web standards, IT and
object/component technologies to form SOA and web services
is announced as the next stage of evolution for e-business
knowing that grid and autonomic computing should add their
contributions too. There is no doubt that the scientific field
will derive many benefits from this trend. The engineer
already benefits from information technologies for
interoperability, especially with XML, COM and CORBA.

VII. PRACTICAL SCENARIO

Interoperability is the ability of systems, units, or forces to
provide services to and accept services from other systems,
units, or forces and to use the services exchanged to enable
them to operate effectively together. A number of mechanisms
are required in order to achieve interoperability between the
database management systems running on different platforms.
These include:

• A mechanism for issuing requests

• A mechanism describing data (self-describing data
strings are useful)

• A mechanism for performing data format translations

• A mechanism for performing joins

• Rules and a protocol for issuing requests and
receiving responses in a structured manner.

In a multi-tier environment, remote data access is never
seamless. The ability to provide transparent data access to
heterogeneous databases is exactly what large Information
System organizations desire most. Transparency implies that
in the user's view (the external schema of the three-schema
architecture), the physical location of the data (the internal
schema) is completely hidden; the enterprise database appears
homogeneous. The client and server components rely on the
availability of Communication protocols, security, transaction
management, replication, and management services within
their respective environments. In order to achieve complete
interoperability in a multi-tier environment, these services
must be consistent and must be universally available across
the heterogeneous platforms. For example consider a
configuration of databases for student’s data stored using
POSTGRES under Linux Server, MYSQL under Linux
Server, Oracle under Windows Server, and MYSQL under
Windows Server. The user can frame a query over distributed
relation stored at different servers located in different sites and
the components at respective sites coordinate in semantic
integrity check, query execution, and send the result to the
initiating site.

VIII. OPEN PROBLEMS IN INTEROPERABILITY IN COMPONENT-
BASED SYSTEMS

1. COTS software is usually delivered as black box
components with limited specification making it
difficult to predict how the components behave under
different conditions.

2. There is a general lack of methods for mapping user
requirements to component based architecture.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:10, 2008

3443

3. Components are packaged and delivered in many
different forms (example: function libraries, off-the-
shelf applications and frameworks).

4. Component framework offer varying features
(example: component granularity, tailorability,
platform support, distributed system support,
interoperability).

5. Most component integration processes suffer from
inflexibility by a lack of component evaluation
schemes. This problem is often compounded by a lack
of interoperability standards between component
frameworks and adequate vendor support.

6. Most COTS software is generally not tailorable or
“plug and play”. Significant effort may be required to
build wrappers and the “glue” between components in
order to evolve the applications or tailor components to
new situations. As the system evolves these wrappers
must be maintained.

IX. CONCLUSION

Interoperability is one of the major challenges, particularly
within component based software development environments,
an approach in which prefabricated reusable software
components from independent sources are assembled together
to build applications. There are many aspects related to
component interoperability, including syntactic agreements on
method names, behavioral specifications of components,
service access protocols, business domain knowledge and
shared ontology, negotiation of Quality of Service and other
non-functional properties. XML allows the flexible
development of user-defined document types. It provides a
robust, non-proprietary, persistent, and verifiable file format
for the storage and transmission of text and data both on and
off the web [11]. It can be customized to meet the users’ needs
in many kinds of applications. Whereas CORBA, RMI,
(D)COM and .NET Remoting try to adapt to the web, SOAP
middleware ensures a native connectivity with it since it
builds on HTTP, SMTP and FTP and exploits the XML web-
friendly data format. Reasons noted for the success of SOAP
are its native web architecture compliancy, its modular design,
its “simplicity”, its text-based model (in contrast to binary and
not self-describing CORBA, RMI, (D)COM, .NET protocols),
its error handling mechanism, its suitability for being the
common message handling layer of web services, its
standardization process and its support from major software
editors. Enterprises are characterized by an organization
networked through their information system in which all the
elements have to interact. This results in an increasing
dependence with regard to information technologies for
interoperability. Corresponding multi-tier architecture
information systems are today built over advanced EJB or
.NET component frameworks, themselves relying on
middleware technologies such as CORBA, RMI and

(D)COM. Initially EJB technology is multi-system and mono-
language (Java) while .NET technology is mono-system
(Windows) and multi-language. CORBA Component Model
aims at proposing a multi-system and multi-language
technology. This paper has dealt in detail, the Interoperability
issues pertaining to Component based software development.

REFERENCES
[1] Gray T. Leavens and Murali Sitaraman, Foundations of Component-

Based Systems, Cambridge University Press, 2000.
[2] Hofmeister, C., Nord, R. and Soni, D, Applied Software

Architecture, Addison- Wesley Longman, 2000.
[3] Serain D. Enterprise Application Integration – L’ architecture

des solutions e-business, avril 2001.
[4] Fay, S. Standards and reuse. The Rational Edge, May 2003..
[5] Sessions. R. Objects and Components, ObjectWatch newsletter

number 28, June 2000.
[6] Beland, J. P. and Pos, M. Open Software Architecture Beland, J. P. and

Pos, M. Open Software Architecture.
[7] Wassermann A. I. Tools Integration in Software Engineering

Environments, spinger-verlag, Berlin, 1998, pp.138-150.
[8] Brown A. W., Component –Based Software Engineering: selected

papers from the Software Engineering Institute, Wesley – IEEE
Computer Society Press.

[9] Chan, R. Adopting RUP in a COTs implementation Project. The
Rational Edge, May 2003.

[10] Boehm B. Spiral Development: Experiences Principles, and
Refinements. Spiral Development Workshop, Ed. Wilfred J. Hansen,
February 2000.

[11] XMLFAQ(2004). The XML FAQ
http://www.ucc.ie:8080/cocoon/xmlfaq.

[12] Peltzer D. (2003) .Net & J2EE Interoperability, November 2003.
[13] Browning, D. Integrate .NET Remoting into the Enterprise Windows

Server System
http://www.ftponline.com/wss/2002_11/magazine/features.

[14] Holloway, R. Compare >NET Remoting to Web Services, Visual Studio
Magazine, Web services in the Enterprise, 12-11, 2002.

[15] TMC. The Petstore Revisited: J2EE Vs .Net Application Server
Performance Benchmark, November 2002.

[16] Object Web Consortium 2004. www.objectweb.org.
[17] Bloomberg, J. Web Services: A New Paradigm for Distributed

Computing, The Rational Edge September 2001.
[18] Linthium, D. S. Next Generation Application Integration from simple

Information to Web Service, September 2003, Addison Wesley.
[19] Newcomer, E. Decide between J2EE and .NET Web Services, Windows

Server System Magazine - 2,9, 2002.
[20] Andrews, W. Predicts 2004, Gartner’s Prediction .

http://w3.gartner.com/research/ spotlight/ assert_55117_895.jsp

