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Abstract— This paper presents anti-synchronization of chaos 

between two different chaotic systems using active control method. 
The proposed technique is applied to achieve chaos anti-
synchronization for the Lü and Rössler dynamical systems. 
Numerical simulations are implemented to verify the results. 
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I. INTRODUCTION 
NE of the most striking discoveries in the study of chaos 
is that chaotic systems can be made to synchronize with 

each other [1]. This discovery by Pecora and Carroll in 1990 
was both theoretically surprising and practically significant. 
Theoretically, chaos stipulates that nearby trajectories diverge 
exponentially in time and, thus, synchronization of chaotic 
systems seems unlikely in the presence of inevitable small 
differences in parameters of the systems, and noise. 

The most familiar synchronization phenomenon is that the 
difference of states of synchronized systems converges to 
zero, and is called complete synchronization (CS). Almost all 
the research reports on chaotic synchronization are relevant to 
complete Synchronization [2]. 

On the other hand, anti-synchronization (AS) is a 
phenomenon that the state vectors of synchronized systems 
have the same absolute values but opposite signs. We say that 
anti-synchronization of two systems 1S  and 2S  is achieved if 
the following equation holds: 
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where )(1 tx , )(2 tx  are the state vectors of the systems 1S , 

2S . 
It is well known that the first observation of synchronization of 

two oscillators by Huygens in the seventeenth century was, in 
fact, AS between two pendulum clocks [3]. Recent 
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reinvestigation of Huygens’ experiment by Blekhman [4] 
shows that either synchronization or AS can appear depending 
on the initial conditions of the coupled pendulua. Here, AS 
can also be interpreted as anti-phase synchronization (APS) 
[5]. That is to say, there is no difference between AS and APS 
for oscillators with identical amplitudes [6]. AS phenomena 
have been observed experimentally in the context of self-
synchronization, e.g., in salt-water oscillators [7], and some 
biological systems where a non-chaotic signal is generated. 
Another potential usage of the phenomenon of anti-phase 
synchronism lies in nonlinear digital communication, which 
has become a field of recent interest [8]. Moreover, it has been 
reported that APS can theoretically occur in a subsystem of 
hyper-chaotic systems with symmetry [8]. 

In this paper, we apply active control theory to anti-
synchronize two different chaotic systems. We demonstrate 
the technique capability on the anti-synchronization of Lü and 
Rössler systems. 

The rest of the paper is organized as follows: In Section II 
the Lü and Rössler chaotic systems are introduced. In Section 
III, the theory of active control is adopted to anti-synchronize 
the systems. In Section IV numerical simulations are 
presented to verify the effectiveness of the proposed method 
and finally the concluding remarks are given in Section V. 

II. SYSTEMS DESCRIPTION 
Lü system as a typical transaction system, found by Lü and 

Chen, which connects the Lorenz and Chen attractors and 
represents the transition from one to the other [9]. The Lü 
system is described by; 
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which has a chaotic attractor as shown in Fig. 1(a) when 

36=α , 20=β , 3=γ . The so called Rössler system is 
credited to Otto Rössler and arose from work in chemical 
kinetics. The system is described with 3 coupled non-linear 
differential equations [10]. 
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which has a chaotic attractor as shown in Fig. 2 (b) when 
2.0=a , 2.0=b , 7.5=c . 

 

 
 

 
 

Fig. 1 (a) Lü chaotic attractor, (b) Rössler chaotic attractor 

III. ANTI-SYNCHRONIZATION BETWEEN LÜ AND RÖSSLER 
SYSTEMS 

To observe the anti-synchronization behavior in Lü and 
Rössler systems we assume that Lü system drives the Rössler 
system. Therefore, we define the master and slave systems as 
follows. 
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and 
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We have introduced three control functions )(1 tu , )(2 tu  
and )(3 tu  in (5). Our goal is to determine the mentioned 
functions. In order to estimate the control functions, we add 
(4) to (5). We define the AS error system as the summation of 
the Lü system (4) and the controlled Rössler system (5). Let 
us define the states of the AS errors for the slave system (5) 
that is to be controlled and the controlling system (4) as; 
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By adding (4) to (5) and using the notation (6) we can get; 
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Then, by defining the active control inputs )(1 tu , )(2 tu  and 

)(3 tu  as follows; 
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this leads to; 
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The AS error system in (9) is a linear system with control 

inputs )(1 tV , )(2 tV  and )(3 tV . Design of an appropriate 
feedback control stabilizes the system so that 1s , 2s  and 3s  
converge to zero as time t  tends to infinity. This implies that 
Lü and Rössler systems are anti-synchronized with feedback 
control. There are many possible choices for the control inputs 

)(1 tV , )(2 tV  and )(3 tV . We choose; 
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where A  is a 33×  constant matrix. In order to make the 
closed loop system stable, the matrix A  should be selected in 
such a way that the feedback system has eigenvalues with 
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negative real part. Let the matrix A is chosen in the following 
form; 
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For this particular choice, the closed loop system (9) has all its 
three eigenvalues in -1. This choice will lead to the AS error 
states 1s , 2s  and 3s  converge to zero and hence the anti-
synchronization between Lü and Rössler systems is achieved. 
We can also make non-zero numbers less than -1. If the 
eigenvalues get smaller, the convergence will become better. 

IV. SIMULATION RESULTS 
In this section, numerical simulations are carried out using 

MATLAB. The fourth order Runge-Kutta integration method 
is used to solve two systems of differential equations (4) and 
(5). In addition, a time step size 0.001 is employed. We will 
select the parameters of Lü system as 36=α , 20=β , 3=γ  
and the parameters of Rössler system as 2.0=a , 2.0=b , 

7.5=c . Therefore, both Lü and Rössler systems exhibit 
chaotic behavior. The initial values of the master and slave 
systems are 1010 −=x , 1710 −=y , 1510=z  and 020 =x , 

5.020=y , 5.120 =z , respectively. These choices result in 
initial errors of 1010 −=s , 5.1620 −=s , 5.1630 =s . The 
diagram of the Rössler system controlled to be anti-
synchronized with Lü system accompanied with the control 
functions )(1 tu , )(2 tu  and )(3 tu  is shown in Fig. 2. The 
dynamics of anti-synchronization errors for the master and 
slave systems is shown in Fig. 3. In order to show the 
eigenvalues effect on convergence, we will use standard 

deviation criterion ( ∑ =
><−=

N

k
NkxkxSD

1
/))()(( ). Let 

m , n , p  be the eigenvalues of the system (9), we make 
pnm == , change the values from 1−  to 50−  and calculate 

SD  for 3s . As shown in Fig. 4, when eigenvalues get smaller, 
the values of SD  become smaller. That is to say, the 
convergence becomes better. 

V. CONCLUSION 
By means of active control theory, we can achieve anti-

synchronization between two different chaotic systems. 
Rössler system is controlled to be anti-synchronized with Lü 
system. The simulations confirm that AS of two systems 
operates satisfactorily in presence of the proposed control 
method. 
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Fig. 2 The diagram of anti-synchronizing between the Lü and 
Rössler systems using active control method 
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Fig. 3 Anti-synchronization errors ),,( 321 sss  between the Lü 

and Rössler systems 
 

 
Fig. 4 The Standard deviation ( SD ) of the signal 3s . 
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