
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

2065

Abstract—All Text processing systems allow their users to

search a pattern of string from a given text. String matching is

fundamental to database and text processing applications. Every text

editor must contain a mechanism to search the current document for

arbitrary strings. Spelling checkers scan an input text for words in the

dictionary and reject any strings that do not match. We store our

information in data bases so that later on we can retrieve the same

and this retrieval can be done by using various string matching

algorithms. This paper is describing a new string matching algorithm

for various applications. A new algorithm has been designed with the

help of Rabin Karp Matcher, to improve string matching process.

Keywords—Algorithm, Complexity, Matching-patterns, Pattern,

Rabin-Karp, String, text-processing.

I. INTRODUCTION

TRING-MATCHING is a technique to find out pattern from

given text. Let be an alphabet, a nonempty finite set.

Elements of are called symbols or characters. A string (or

word) over is any finite sequence of characters from . For

example, if = {a,b}, then abab is a string over . String-

matching is a very important topic in the domain of text

processing.[2] String-matching consists in finding one, or

more generally, all the occurrences of a string (more generally

called a pattern) in a text. The pattern is denoted by P=P [0 ...

m-1]; its length is equal to m. The text is denoted by T=T [0 ...

n-1]; its length is equal to n. Both strings are building over a

finite set of character called an alphabet denoted by . [3]

RABIN KARP matcher is one of the most effective string

matching algorithms. To find a numeric pattern ‘P’ from a

given text ‘T’. It firstly divides the pattern with a predefined

prime number ‘q’ to calculate the remainder of pattern P. Then

it takes the first m characters (where m is the length of pattern

P) from text T at first shift s to compute remainder of m

characters from text T. If the remainder of the Pattern and the

remainder of the text T are equal only then we compare the

text with the pattern otherwise there is no need for the

comparison.[1] The reason is that if the remainders of the two

numbers are not equal then these numbers cannot be equal in

any case. We will repeat the process for next set of characters

Dr. Rajender Singh Chillar is Reader, Formal HOD (CS) with Maharishi

Dayanand University, India (phone: +919416277507; e-mail: chillar01@

rediffmail.com).

Barjesh Kochar is working as HOD-IT with GNIM, New Delhi, India

(phone:+919212505801; e-mail: barjeshkochar@gmail.com)

Garima Singh (Jr. Author) is pursuing B.Tech studying in GGSIPU

University, New Delhi, India (e-mail: garima_20_04@yahoo.co.in).

Kanwaldeep Singh (Jr. Author) is pursuing B.Tech studying in GGSIPU

University, New Delhi, India (e-mail: kawal_deep87@yahoo.co.in).

from text for all the possible shifts which are from s=0 to n-

m(where n denotes the length of text and m denotes the length

of P). So according to this two number n1 and n2 can only be

equal if

 REM (n1/q) = REM (n2/q) [1]

After division we will be having three cases :-

Case 1:

Successful hit: - In this case if REM (n1) = REM(n2) and also

characters of n1 matches with characters of n2.

Case 2:

Spurious hit: - In this case REM (n1) = REM (n2) but

characters of n1 are not equal to characters of n2.

Case 3:

If REM (n1) is not equal to REM (n2), then no need to

compare n1 and n2.

Ex-

For a given text T, pattern P and prime number q

so to find out this pattern from the given text T we will take

equal number of characters from text as in pattern and divide

these characters with predefined number q and also divide the

pattern with the same predefined number q. Now compare

their remainders to decide whether to compare the text with

pattern or not.

Rem (Text) =234567/11=3

Rem (Pattern) =667888/11=1

As both the remainders are not equal so there is no need to

compare text with pattern. Now move on to next set of

characters from text and repeat the procedure. [1]. If

remainders match then only we compare the part of text to the

pattern otherwise there is no need to perform the comparison.

We will maintain three variables Successful Hit, Spurious Hit

and Unsuccessful Hit.

Rabin Karp Matcher Algorithm

Rabin_Matcher (T,P,d,q)

{

 n =Length (T)

 m= Length (P)

 t0=0

 p=0

 h=dm-1mod q

RB-Matcher: String Matching Technique

Rajender Singh Chillar, Barjesh Kochar

S

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

2066

 For i=1 to m

 { p = (dp+P[i]) mod q

 t0 =(d t0 + T[i]) mod q

 }

 For s =0 to n-m

 { If ts=p

 { then

 { if P[1….m]=T[s+1…….s+m]

 then print pattern matches at shift ‘s’

 }

 }

 if s<= n-m

 ts+1= (d(ts-h*T[s+1]) + T[s+1+m]) mod q

 }

}[1]

II. IMPROVED STRING MATCHING ALGORITHM

A. Theory

As we can see, spurious hit is an extra burden on algorithm

which increases its time complexity because we have to

compare text with pattern and won’t be able to get pattern at

that shift so to avoid this extra matching, RB_Matcher says

that along with remainders compare the quotients also.

 REM(n1/q)=REM(n2/q) and

 QUOTIENT (n1/q)= QUOTIENT (n2/q)

So, according to this method along with calculation of

remainder, we will also find out quotient and if both

remainder and quotient of text matches with pattern then it is

successful hit otherwise it is an unsuccessful hit and then there

is no need to compare it. That means there is no extra

computation of spurious hits if both are same then pattern

found else pattern not found. Please, leave two blank lines

between successive sections as here.

B. Algorithms

The modified algorithm is as follows:-

RB_ Matcher (T,P,d,q)

{

n =Length (T)

m= Length (P)

t0=0

p=0

Q=0

pq=0

h=dm-1mod q

For i=1 to m

{

p = (dp+P[i]) mod q

t0 =(d t0 + T[i]) mod q

}

pq= P[1…..m] DIV q

For s =0 to n-m

{

Q=T{s+1……….s+ m] DIV q

If (ts = p and Q = pq)

{

then print pattern matches at shift ‘s’

}

if s<= n-m

ts+1= (d(ts-h*T[s+1]) + T[s+1+m]) mod q

}

} [3]

III. IMPROVEMENTS

Rabin Karp matcher algorithm was computing remainder on

the basis of which it was conducting whether the pattern has

been found in the text or not. So there was an extra

computation when processing for the spurious hits. But in the

case of Modified RB matcher there is no chance of spurious

hits because it always gives one solution i.e. in case of

successful hits.

A. Comparisons in terms of Time Complexity

To compare the previous work with the new one we applied

both these algorithms on a lot of Fictitious Data & the results

shows that Modified RB_matcher algorithm is having less

Time complexity as compared to Rabin – Karp Matcher. The

worst case time complexity of Rabin-Karp matcher is O (n-

m+1) m). While the worst case time complexity of Modified

RB Matcher is O (nm+ 1) (This Time complexity can be

further improved if q=m) where n denotes the total characters

in Text T and m denotes total characters in Pattern P.[9]

Graphs:-

Fig. 1 shows Time complexities of Rabin Karp and RB

Matcher if n=9

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

2067

Fig. 2 shows Time complexities of Rabin Karp and RB

Matcher if n=20

Fig. 3 shows Time complexities of Rabin Karp and B

Matcher if n=100

B. Comparison in terms of Example

Rabin Karp Example: Text= 14412217356431121441, to

find Pattern P= 1441, q = 11, Remainder of Pattern ‘P’ is p=0

Rest cases are Unsuccessful Hits. So in Rabin Karp to find out

Pattern ‘P’ we encounter Spurious Hits which is extra

processing.

Fig. 4 Example Rabin Karp

Modified Rabin Karp Example:

(Q denotes Quotient)

In this algorithm comparison of pattern and Text will

always lead to successful hits.

C. Test Cases

We will some study test cases for the modified algorithms

complexity.

TABLE I FOR MODIFIED RABIN KARP MATCHER (CONSTANT TEXT LENGTH)

S No Length of

text (n)

Length of

pattern

(m)

VALUE

OF q

Complexity

(n-m+1)

1 100 10 2 91

 3 91

 5 91

 7 91

 11 91

 13 91

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

2068

 17 91

 19 91

 23 91

2 100 15 2 86

 3 86

 5 86

 7 86

 11 86

 13 86

 17 86

 19 86

 23 86

3 100 20 2 81

 3 81

 5 81

 7 81

 11 81

 13 81

 17 81

 19 81

 23 81

4 100 50 2 49

 3 49

 5 49

 7 49

 11 49

 13 49

 17 49

 19 49

 23 49

TABLE II FOR MODIFIED RABIN KARP (FOR CONSTANT PATTERN LENGTH)

S

No

Length

of text

(n)

Length

of pattern

(m)

VALU

E OF q

Complexity

(n-m+1)

1 100 10 2 91

 3 91

 5 91

 7 91

 11 91

 13 91

 17 91

 19 91

 23 91

2 200 10 2 191

 3 191

 5 191

 7 191

 11 191

 13 191

 17 191

 19 191

 23 191

3 300 10 2 291

 3 291

 5 291

 7 291

 11 291

 13 291

 17 291

 19 291

 23 291

4 400 10 2 391

 3 391

 5 391

 7 391

 11 391

 13 391

 17 391

 19 391

 23 391

IV. CONCLUSION

With the above, we concluded that any numeric pattern can

be found out from the given Text ‘T’ by following Modified

RB matcher in an effective & efficient way. We also invite

other Research Scholars to work on same and find out some

better way to find out string from the given text.T.

REFERENCES

[1] Algorithm design and analysis by T.H Coreman .

[2] Algorithm design by Aho ulman and Hopcrafft

[3] www.algodesign.com

[4] Richard M.Karp. An Introduction to Randomized Algorithms. Discrete

Applied mathematics,34:165-201,1991

