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Abstract—We report a computational study of the spreading 

dynamics of a viral infection in a complex (scale-free) network. The 

final epidemic size distribution (FESD) was found to be unimodal or 

bimodal depending on the value of the basic reproductive 

number 0R . The FESDs occurred on time-scales long enough for 

intermediate-time epidemic size distributions (IESDs) to be important 

for control measures. The usefulness of 0R  for deciding on the 

timeliness and intensity of control measures was found to be limited 

by the multimodal nature of the IESDs and by its inability to inform 

on the speed at which the infection spreads through the population. A 

reduction of the transmission probability at the hubs of the scale-free 

network decreased the occurrence of the larger-sized epidemic events 

of the multimodal distributions. For effective epidemic control, an 

early reduction in transmission at the index cell and its neighbors was 

essential. 

 

Keywords—Basic reproductive number, epidemic control, scale-

free network, viral infection. 

I. INTRODUCTION 

OMPLEX networks contemporarily underpin significant 

research in the description of infectious diseases and their 

control [1]. We report a computational study of the spreading 

dynamics of a viral infection in a complex (scale-free) network 

[2] defined on a real-life human population distribution. The 

dynamics was simulated using a stochastic discrete-time 

susceptible-exposed-infected-removed (SEIR) cellular model. 

The basic reproduction number, 0R , was computed as the 

average number of secondary cases (average taken over all the 

stochastic realizations) produced by an index case during its 

infectious period in an otherwise totally susceptible 

population. The final epidemic size distribution (FESD) was 

found to be unimodal or bimodal depending on the value of 

0R . 0R  increased linearly with the transmission probability 

with a gradient equal to the product of the infectious period 

and the average daily number of contacts of the index case 

during this length of time. The FESDs occurred on time-scales 

long enough for intermediate-time epidemic size distributions 

(IESDs) to be important in the implementation of control 
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measures. The usefulness of 0R  for deciding on the timeliness 

and intensity of control measures was found to be limited by 

the multimodal nature of the IESDs and by its inability to 

inform on the speed at which the infection spreads through the 

population noting that, for a fixed value of 0R , different 

stochastic realizations spread at different speeds. It was also 

found that a reduction of the viral transmission probability at 

the hubs of the scale-free network decreased the occurrence of 

the larger-sized epidemic events of the multimodal 

distributions but that for effective epidemic control an early 

reduction in transmission at the index cell and its neighbors is 

essential thus highlighting the need for a strong public health 

surveillance system for an early identification of the index case 

and rapid intervention for efficient epidemic mitigation and 

control. 

II.  METHODS AND DESCRIPTION OF MODEL 

A. Geographical Region of Interest 

The viral propagation was assumed to have started 

following the introduction of an index infected human case 

into a totally susceptible human population located in an area 

of interest of Port Louis, the capital city of Mauritius. The area 

of interest was selected from a Google Earth digital image of 

the city. This area was the same as that previously used to 

study an outbreak of dengue fever in Mauritius [3]. The area of 

interest, of size ( )kmkm 6.39.2 × , was divided into cells each 

of size ( )kmkm 1.01.0 × . The number of houses in each cell 

was estimated using color image analysis. The human 

population distribution was then obtained by assuming an 

average number of five inhabitants per house.  

B. The Scale-Free Network 

The scale free network was set up as as follows [3]: 

1. Four most frequently visited places (primary hubs) in the 

area of interest were chosen. 

2. Each hub was represented by one cell. 

3. The index cell was randomly linked to two of the hubs. 

4. Another cell was chosen. The cell was allowed to link 

itself with the hubs or with the index cell using the 

Barabási–Albert algorithm [2]. 

5. The procedures 3-4 were repeated for the remaining cells 

to generate a scale-free network [2]. 

C. Human Interaction and Infection Model 

The index case was assumed to reside in an index cell. 

Individuals in a cell were assumed to interact with each other 
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using an SEIR (susceptible-exposed-infected-removed) human 

interaction model. The probability, ISp , that a susceptible 

individual was infected by contact with in  infectious 

individuals was ( ) in
ISp λ−−= 11 , where λ  is the 

transmission probability on contact. This infection was 

accepted provided ISp  was greater than a uniform ( )1,0  

random number and the susceptible individual then moved to 

the exposed (latent) state before moving to the infectious state 

and then to the recovered state. The latent period was 5 days 

and the infectious period was also 5 days. The incubation 

period was assumed to be 6 days. The latent period was chosen 

to be equal to the infectious period so that the index case was 

the only infectious human in the population during the 

infectious period of this individual. This allowed a 

straightforward computation of the basic reproductive number. 

The number of contacts of the index case during its infectious 

period was the number of random numbers generated during 

this length of time.  

D. Human Mobility Model 

Individuals in a cell were also assumed to be able to move 

locally with equal probability to each of the eight next 

neighboring cells and interact with individuals of those cells. 

They were also assumed to move globally on the scale-free 

network and interact with individuals on the network. Only 

10% of the human population of a cell was allowed to move 

globally (and 10% locally) at each time step (one day) and 

they returned to their original cell at the end of the time step. 

E. Stochastic Realization  

A run of an SEIR simulation was assumed completed after 

the update of the status of all the individuals in the area of 

interest. Each run corresponded to a time-step of one day. A 

stochastic realization of the simulation covered a length of 

time sufficient for the epidemic to converge to its final 

epidemic size for that simulation. This length of time 

depended on the value of the transmission probability. An 

epidemic size distribution was taken as the distribution of the 

epidemic size over all the stochastic realizations at an arbitrary 

time. The final epidemic size distribution was the converged 

epidemic size distribution. 

F. Calculation of the Basic Reproduction Number 

Let r be the number of secondary cases produced by the 

index case during its infectious period in an otherwise totally 

susceptible population in a stochastic realization and ir  be the 

value of r in the i
th

 stochastic realization. Then, the basic 

reproduction number )( 0R  was taken as the average of r over 

all the stochastic realizations. Thus, for N stochastic 

realizations, 
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G. Epidemic Control Strategy 

The epidemic control strategy involved (i) a reduction of the 

transmission probability at the hubs of the network right from 

the introduction of the index case in the human population 

and/or (ii) a reduction of the transmission probability at 

source, i.e. at the index cell and its surrounding cells, as from 

the end of the incubation period. 

III. RESULTS 

The human population size for the area of interest was 

computed as 82,580 and this was heterogeneously distributed 

over the area. For example, the index cell was found to have a 

population of 165 humans while the populations of the 4 

primary hubs were 255, 215, 195 and 35. The primary hubs 

had 82, 44, 35 and 18 links from the most connected to the 

least connected hub. It was also found that a number of hidden 

hubs [4] arose from the construction of the network. These 

hubs are cells, other than the primary hubs, which by virtue of 

the construction of the scale-free network developed a large 

number of links compared to other cells. Table I shows the 

cell-link distribution for the network, for cells other than the 

primary hubs. 
 

TABLE I 

CELL-LINK DISTRIBUTION FOR THE SCALE-FREE NETWORK CONSTRUCTED, 

FOR CELLS OTHER THAN THE PRIMARY HUB 

No. of links 1-5 6-

10 

11-

15 

16-

20 

21

-

25 

26-

30 

31-

35 

36-

40 

No. of cells 604 29 13 3 2 1 1 1 

 

The final epidemic size, i.e. the average of the final 

epidemic size distribution, increased with the transmission 

probability. Fig. 1 shows the final epidemic size distributions 

for transmission probabilities of 333 105,102,10 −−− ××=λ  

and 2101 −×  for 500 stochastic realizations.  
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Fig. 1 Histograms of the final epidemic size (expressed as % of the 

total population) distributions for (a) 8680.00 =R , (b) 7260.10 =R , 

(c) 6571.40 =R  and (d) 7240.80 =R . The number of stochastic 

realizations was 500 for each value of 0R  

 

The times taken for convergence of the distributions 

depended on λ  and were respectively 200, 650, 200 and 150 

days for these values of λ . The associated values of the basic 

reproductive number were 6571.4,7260.1,8680.00 =R  and 

8.7240. For these values of 0R , the epidemic size distributions 

were sizeable for only 7260.10 =R  (bimodal) and 

6571.40 =R (unimodal) and 7240.80 =R  (unimodal). 

Although the final epidemic size distributions were either 

bimodal or unimodal, the distributions displayed multimodal 

behaviour as the epidemic developed as shown in Fig. 2 for 

7240.80 =R  for 1000 stochastic realizations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Epidemic evolution for 7240.80 =R : temporal histograms of 

epidemic sizes for 1000 stochastic realizations at (a) 20 days, (b) 40 

days, (c) 60 days and (d) 80 days 

 

At 60 days, for example, the epidemic size was a multi-

valued function of r as shown in Fig. 3 for 7240.80 =R . 

 

 

Fig. 3 Epidemic size as a function of r (as defined in the text) for 

1000 stochastic realizations at 60 days for 7240.80 =R  

 

Thus, at 60 days, for 7240.80 =R  and a fixed value of r, 

different stochastic realizations can yield different epidemic 

sizes whereas the same epidemic sizes can be obtained from 

different values of r. The above results also show that 0R  

increased linearly with the transmission probability with a 

gradient equal to 877. The average daily number of contacts of 

the index case during its infectious period was found to be 

175. 

The results of various epidemic control strategies are shown 

in Fig. 4 for .7240.80 =R   
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Fig. 4 Histograms showing effects of various control strategies on the 

epidemic size at 60 days for 7240.80 =R : (a) no intervention, (b) 

interventions at the primary hubs from the start of the simulations, (c) 

interventions at the index cell and its 8 immediate neighbors as from 

the 7th day of the simulations, (d) the combination of (b) and (c), (e) 

the combination of (b) and (c) together with interventions at the 

hidden hubs from the start of the simulations. The number of 

stochastic realizations was 1000 in each case 

 

The locations of the primitive hubs were known by 

construction and thus interventions consisting of the reduction 

of the transmission probability by a factor of 100 were applied 

from the first day of the simulations. As Fig. 4 (b) shows, these 

interventions led to a reduction of the frequency of the larger-

sized epidemic events. However, interventions at the index cell 

and its 8 immediate neighbors as from the 7
th

 day, i.e. as from 

the end of the incubation period, had a much more significant 

impact on the epidemic size distributions as shown in Fig. 4 

(c). This impact is enhanced by a combination of interventions 

at the index cell, its 8 immediate neighbors and the primitive 

hubs (Fig. 4 (d)) and further enhanced by a combination which 

also includes interventions at the hidden hubs (Fig. 4 (e)) 

where we took the hidden hubs as those cells, other than the 

primary hubs, which has greater of equal to 16 links. 

IV. DISCUSSION 

Public health planning and response to the threat of 

emerging and re-emerging viral infections depend to a large 

extent on our ability to forecast and minimize the size of 

epidemics. With the advent of modern computational facilities, 

sophisticated computing techniques and network epidemiology 

[5], useful models for the mapping and forecasting of 

epidemics in realistic human populations are being developed 

and used for simulations. The model used here combines 

stochastic cellular automata and scale-free network 

epidemiology with Google Earth satellite imagery to map the 

development of an infection in a real-life human population 

and forms part of a suite of some recent models [3], [6-8] 

using open-source satellite imagery for infectious disease 

mapping and control. 

The model generates unimodal or bimodal final epidemic 

size distributions, depending on the value of 0R . However, the 

time taken to reach the final epidemic size occurs on time-

scales long enough for epidemic size distributions at 

intermediate times to be important in the implementation of 

control strategies. The intermediate-time epidemic size 

distributions were found to be multimodal with large 

variances. Such distributions limit the usefulness of 0R  as a 

decision-making tool for judging on the timeliness and 

intensity of control measures. This limitation is compounded 

by the fact that, for the same value of 0R , different stochastic 

realizations spread at different speeds and that only one of the 

stochastic realizations will occur. Moreover, the linear 

dependence of 0R  on λ descends from the infection model 

which ensures that when ,1=in

 

λ=ISp  and the infection 

would be accepted for λ  times the number of contacts with 

the result that 0R  would then be equal to the product of λ , the 

infectious period and the average daily number of contacts. 

The idea of controlling the spread of epidemics in scale-free 

networks by hub-targeting is widely discussed in the literature 

[4], [9]-[12] In this study, a 100-fold reduction of viral 

transmission probability at the hubs decreased the occurrence 

of the larger-sized epidemic events but for a really effective 

epidemic control an early reduction in transmission at the 

index cell and its neighbours is essential. Tardy identification 

and implementation of control measures can only lead to larger 

epidemic sizes and weaker public health responses with 

increased morbidity and social distress. This highlights the 

need for the strengthening of public health systems for early 

identification of index cases and rapid interventions for 

efficient epidemic mitigation and control. 
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