
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:8, 2009

2049

 

 

  
Abstract—In the artificial intelligence field, knowledge 

representation and reasoning are important areas for intelligent 
systems, especially knowledge base systems and expert systems. 
Knowledge representation Methods has an important role in 
designing the systems. There have been many models for knowledge 
such as semantic networks, conceptual graphs, and neural networks. 
These models are useful tools to design intelligent systems. However, 
they are not suitable to represent knowledge in the domains of reality 
applications. In this paper, new models for knowledge representation 
called computational networks will be presented. They have been 
used in designing some knowledge base systems in education for 
solving problems such as the system that supports studying 
knowledge and solving analytic geometry problems, the program for 
studying and solving problems in Plane Geometry, the program for 
solving problems about alternating current in physics. 
 

Keywords—Artificial intelligence, artificial intelligence and 
education, knowledge engineering, knowledge representation.  

I. INTRODUCTION 
N artificial intelligence science, models and methods for 
knowledge representation play an important role in 

designing knowledge base systems and expert systems. 
Nowadays there are many various knowledge models which 
have already been suggested and applied. In the books [1], [2], 
[3], and [4] we have found popular methods for knowledge 
representation in designing knowledge base systems (KBS) 
such as predicate logic, semantic nets, frames, deductive rules. 
Many new methods and techniques were presented in [11], 
[12], [13], and [14]. Among these methods neural networks 
and fuzzy logic can be used for computational intelligence. 
Some methods are suitable for representing and processing 
semantics such as conceptual graphs in [8], [9] and [10].  

The above methods are very useful for designing intelligent 
systems, and for solving complex problems. However, they 
are not suitable to represent knowledge in the domains of 
reality applications in many cases, especially the systems that 
can solve problems in practice based on the knowledge base. 
The ontology called COKB-ONT presented in [7] is also a 
good and useful tool for developing knowledge base systems 
in practice.  This ontology was used to construct some 
intelligent systems in education, and these systems were 
introduced in [5], [6] and [15]. Although COKB-ONT is very 
useful and suitable for representing knowledge, it is not strong 
enough for representing knowledge in the domains of reality 
 
 

applications. Therefore, it is needed to develop new models to 
represent problems with knowledge. In this paper, we present 
the models for knowledge representation that are called 
computational networks. They have been used in designing 
some knowledge base systems in education for solving 
problems such as the system that supports studying knowledge 
and solving analytic geometry problems, the program for 
studying and solving problems in Plane Geometry, the 
program for solving problems about alternating current in 
physics. These applications have been implemented by using 
programming tools and computer algebra systems such as 
C++, JAVA, and MAPLE. They are very easy to use for 
students in studying knowledge, to solve automatically 
problems and give human readable solutions agree with those 
written by teachers and students. Problems are also modeled 
easily using the computational networks, together with the 
algorithms for solving problems automatically and propose a 
simple language for specifying them. 

II. COMPUTATIONAL NETWORKS WITH SIMPLE 
VALUED VARIABLES 

In this part a simple model of computational nets will be 
presented together related problems and techniques for 
solving them. Although this model is not very complicated, 
but it is a very useful tool for designing many knowledge base 
systems in practice. 

A. Definitions 
Definition 2.1: A computational network (CN) with simple 

valued variables is a pair (M, F), in which M = {x1, x2, ..., xn} 
is a set of variables with simple values (or unstructured 
values), and F = {f1, f2, ..., fm} is a set of computational 
relations over the variables in the set M. Each computational 
relation f ∈ F has the following form: 

(i) An equation over some variables in M, or 
(ii) Deductive rule f : u(f)  v(f), with u(f) ⊆ M, v(f) ⊆ 

M, and there are corresponding formulas to 
determine (or to compute) variables in v(f) from 
variables in u(f).We also define the set  M(f) = u(f) ∪ 
v(f). 

Remark: In many applications equations can be represented as 
deduction rules. 

 Example 2.1: The computational knowledge over elements 
of a triangle named ABC can be represented by a 
computational networks (M, F) with M = {A, B, C, a, b, c, R, 
S, p, …} (the set of all attributes of triangle ABC) and  

Computational Networks for Knowledge 
Representation 

Nhon Van Do 

I 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:8, 2009

2050

 

 

F = { f1: A + B + C  =  π,  f2 : 
B)(sin

b
)sin(A

a
= ,  

f3 : 
B)(sin

b
C)(sin

c
= , f4: 

C)(sin
c

A)(sin
a

= ,  

f5 : p = (a+b+c)/2, f6 : S = a.ha / 2, f7 : S = b.hb / 2,  
f8 : S = c.hc / 2, f9 : S = a.b.sin(C) / 2, ...}. 

B. Problems 
Given a computational net (M, F). The popular problem 

arising from reality applications is that to find a solution to 
determine a set H ⊆ M from a set G ⊆ M. This problem is 
denoted by the symbol H→G, H is the hypothesis and G is the 
goal of the problem. To solve the problem we have to answer 
two questions below: 

Q1: Is the problem solvable based on the knowledge K = 
(M, F)? 

 Q2: How to obtain the goal G from the hypothesis H based 
on  the knowledge K = (M, F) in case the problem is solvable? 

 Example 2.2: In the knowledge K = (M, F) of example 1, 
suppose that H = { a=5, b=4, A=π/2 }, Find a solution for the 
goal G = {S, R}. 

Definition 2.2: Given a computational net K = (M, F). 
(i) For each A ⊆ M and f ∈ F, denote f(A) = A ∪ M(f)  

be the set obtained from A by applying f.  Let S =  
[f1, f2, ..., fk] be a list consisting relations in F, the 
notation S(A) = fk(fk-1(… f2(f1(A)) … )) is used to 
denote the set of variables obtained from A by 
applying relations in S. 

(ii) The list S = [f1, f2, ..., fk] is called a solution of the 
problem H→G if  S(H) ⊇ G. Solution S is called a 
good solution if there is not a proper sublist S’ of S 
such that S’ is also a solution of the problem. The 
problem is solvable if there is a solution to solve it. 

Definition 2.3: Given a computational net K = (M, F). Let 
A be a subset of M. It is easy to verify that there exists a 

unique set A ⊆ M such that the problem A→ A  is solvable; 

the set A  is called the closure of A. 

C. Algorithms and Theorems 
The following are some algorithms and results that show 

methods and techniques for solving the above problems on 
computational nets. The proofs will be omitted here. They 
were used in designing knowledge base systems such as those 
presented in [5], [6], [7] and [15]. 

Theorem 2.1: Given a computational net K = (M, F). The 
following statements are equivalent. 

(i) Problem H→G is solvable. 

(ii) H ⊇ G. 
(iii) There exists a list of relations S such that S(H) ⊇ G. 

Algorithm 2.1:  Find a solution of the problem H→G. 
 Step 1: Solution ← empty; 
 Step 2: if  G ⊆ H  then  
   begin 
   Solution_found ← true; 
   goto step 4; 

   end 
  else 
   Solution_found ← false; 
 Step 3: Repeat 
   Hold ← H;  
   Select  f ∈ F; 
   while  not Solution_found  and (f found)  do 
    begin 
    if  (applying f from H produces new facts)  
      then 
     begin 
     H ← H ∪ M(f); 
     Add f to Solution;  
     end; 
    if  G ⊆ H  then    
     Solution_found ← true; 
    Select new  f ∈ F; 
    end; { while } 
  Until   Solution_found  or  (H = Hold); 
 Step 4: if  not Solution_found  then 
   There is no solution found; 
  else 
   Solution is a solution of the problem; 

Algorithm 2.2: Find a good solution from a solution S = 
[f1, f2, ..., fk] of the problem H→G on computational net (M, 
F). 
Step 1:  NewS ← []; 
             V ← G; 
Step 2:  for  i := k  downto 1  do 
                  If  v(fk) ∩ V ≠ ∅  then 
                      Begin 
                      Insert fk at the beginning of  NewS; 
                      V ← (V – v(fk)) ∪ (u(fk) – H); 
                      End 
Step 3:  NewS is a good solution. 

On a computational net (M, F), in many cases the problem 
H→G has a solution S in which there are relations producing 
some redundancy variables. At those situations, we must 
determine necessary variables of each step in the problem 
solving process. The following theorem shows the way to 
analyse the solution to determine necessary variables to 
compute at each step. 

Theorem 2.2: Given a computational net K = (M, F).  
Let [f1, f2, ..., fm] be a good solution of the problem H→G. 
denote A0 = H, Ai = [f1, f2, ..., fi](H), with i=1, ..., m. Then 
there exists a list [B0, B1, ..., Bm-1, Bm] satisfying the following 
conditions: 

(1)  Bm = G, 
 (2)  Bi ⊆ Ai , with i=0, 1, ..., m. 
 (3) For i=1,...,m, [fi] is a solution of the problem Bi-1 → Bi 
but not to be a solution of the problem B → Bi , with B is any 
proper subset B of Bi-1. 

Example 2.3: For the computational net (M, F) representing 
the knowledge related to triangles in example 2.1, find a 
solution of the problem {a, B, C}→{S}. The algorithm 2.1 
will give us a solution Sol = [f1, f2, f3, f5, f9], and this solution 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:8, 2009

2051

 

 

is not a good solution because there exists a redundancy 
relation such as f5. From the solution Sol the algorithm 2.2 
will give the new solution NewSol = [f1, f2, f9], and the 
process to solve the problem is as follows: 
 Step 1: Compute A by applying f1; 
 Step 2: Compute b by applying f2; 
 Step 3: Compute S by applying f9; 

III. NETWORKS OF COMPUTATIONAL OBJECTS 
In many problems we usually meet many different kinds of 

objects. Each object has attributes and internal relations 
between them. Therefore, it is necessary to consider an 
extension of computational nets in which each variable is a 
computational object. 

Definition 3.1: A computational object (or Com-object) has 
the following characteristics: 

(1)  It has valued attributes. The set consists of all 
attributes of the object O will be denoted by M(O). 

(2)  There are internal computational relations between 
attributes of a Com-object O. These are manifested in 
the following features of the object: 

- Given a subset A of M(O). The object O can show us 
the attributes that can be determined from A. 

- The object O will give the value of an attribute. 
- It can also show the internal process of determining 

the attributes. 
 Example 3.1: A triangle with some knowledge (formulas, 

theorems, etc ...) is an object. The attributes of a “triangle” 
object are 3 edges, 3 angles, etc. A “triangle” object can also 
answer some questions such as “Is there a solution for the 
problem that to compute the surface from one edge and two 
angles?”. 

Definition 3.2: A computational relation f between 
attributes of certain objects is called a relation between the 
objects. A network of  Com-objects will consists of a set of 
Com-objects O = {O1, O2, ..., On} and a set of computational 
relations F = {f1, f2, ... , fm}. This network of Com-objects is 
denoted by (O, F).  The following are some notations: 
 M(fi)  = the set of attributes of C-objects in the 

relation fi. 

 M(F)  =  M(fi
i 1

m

)
=
Υ . 

 M(O)  =  M(Oi
i 1

n

)
=
Υ . 

 M  =  the set of attributes of C-objects are considered 
in certain problem. 

 Mi  =  M ∩ M(Oi),  for i=1,2, ... , m. 
By the above notations, Mi is the set of attributes considered 
of the object Oi. 

On the network of Com-objects (O, F), we consider the 
problem that to determine (or compute) attributes in set G 
from given attributes in set H. The problem will be denoted by 
H→G. 

Example 3.2: In the figure 1 below, suppose that AB = AC, 
the values of the angle A and the edge BC are given 

(hypothesis). ABDE and ACFG are squares. Compute EG. 

 
Fig. 1  A problem in geometry 

The problem can be considered on the network of Com-
objects (O, F) as follows: 
O = {O1: triangle ABC with AB = AC, O2 : triangle AEG, O3 : 
square ABDE, O4 : square ACFG }, and F = {f1, f2, f3, f4, f5} 
consists of the following relations 
  f1 :  O1.c = O3.a 

{the edge c of triangle ABC = the edge of the 
square ABDE} 

  f2 :  O1.b = O4.a 
{the edge b of triangle ABC = the edge of the 
square ACFG} 

  f3 :  O2.b = O4.a 
{the edge b of triangle AEG = the edge of the 
square ACFG} 

  f4 :  O2.c = O3.a 
{the edge c of triangle AEG = the edge of the 
square ABDE} 

  f5 :  O1.A + O2.A  =  π. 
Definition 3.3: Let (O, F) be a network of Com-objects, 

and M be a set of concerned attributes. Suppose A is a subset 
of M.  

(a) For each f ∈ F, denote f(A) is the union of the set A 
and the set consists of all attributes in M deduced from 
A by f. Similarly, for each Com-object Oi ∈ O, Oi(A) 
is the union of the set A and the set consists of all 
attributes (in M) that the object Oi can determine from 
attributes in A. 

(b) Suppose D = [t1, t2, ..., tm] is a list of elements in F ∪ 
O. Denote 

   A0 = A,  A1 =  t1(A0),  . . .,  Am = tm(Am-1), and   
   D(A) = Am. 
We have  A0 ⊆ A1 ⊆ . . . ⊆ Am = D(A) ⊆ M. 

A problem H → G is called solvable if there is a list  
D ⊆ F ∪ O such that D(A) ⊇ B. In this case, we say that D is 
a solution of the problem. 

Technically the theorems and algorithms in section II can 
be develop to obtain the new ones for solving the problem H 
→ G on network of Com-objects (O, F). They will be omitted 
here except the algorithm to find a solution of the problem. 
The worthy of note is that the objects may participate in 
solutions as computational relations. 
Algorithm 3.1:  Find a solution of the problem H→G on a 
network of Com-objects. 
 Step 1: Solution ← empty; 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:8, 2009

2052

 

 

 Step 2: if  G ⊆ H  then  
   begin 
   Solution_found ← true; 
   goto step 5; 
   end 
  else 
   Solution_found ← false; 
 Step 3: Repeat 
   Hold ← H;  
   Select  f ∈ F; 
   while  not Solution_found  and (f found)  do 
    begin 
    if  (applying f from H produces new facts)   
then 
     begin 
     H ← H ∪ M(f); 
     Add f to Solution;  
     end; 
    if  G ⊆ H  then    
     Solution_found ← true; 
    Select new  f ∈ F; 
    end; { while } 
  Until   Solution_found  or  (H = Hold); 
 Step 4: if  not Solution_found  then 
   begin 
   Select  Oi ∈ O such that Oi(H) ≠ H; 
    if  (the selection is successful) then 
    begin 
    H ← Oi(H); 
    Add Oi to Solution; 
    if  (G ⊆ H)  then 
     begin 
     Solution_found ← true; 
     goto  step 5; 
     end; 
    else 
     goto  step 3; 
    end; 
   end; 
 Step 5: if  not Solution_found  then 
   There is no solution found; 
  else 
   Solution is a solution of the problem; 
 
Example 3.3: Consider the network (O, F) in example 3.2, and 
the problem H → G, where H = {O1.a, O1.A}, and G = 
{O2.a}. 
Here we have: 
M(f1) = { O1.c , O3.a }, 
  M(f2) = { O1.b , O4.a }, 
  M(f3) = { O2.b , O4.a }, 
  M(f4) = { O2.c , O3.a }, 
  M(f5) = { O1.α , O2.α }, 
  M      = { O1.a, O1.b, O1.c, O1.A, O2.b, O2.c, O2.A ,  
     O2.a, O3.a, O4.a }. 

The above algorithms will produce the solution  
D = { f5, O1, f1, f2, f3, f4, O2},  

And the process of extending the set of attributes as 
follows: 

 A0  5f⎯ →⎯   A1   1O⎯ →⎯   A2   1f⎯ →⎯    

 A3  2f⎯ →⎯   A4  3f⎯ →⎯    A5  4f⎯ →⎯    

 A6   2O⎯ →⎯⎯    A7 
Where 

A0 = A = {O1.a , O1.A}, 
 A1 = {O1.a , O1.A, O2.A}, 
 A2 = { O1.a , O1.A, O2.A, O1.b, O1.c }, 
 A3 = {O1.a , O1.A, O2.A, O1.b, O1.c, O3.a}, 
 A4 = {O1.a , O1.A, O2.A, O1.b, O1.c, O3.a,  
   O4.a}, 
 A5 = {O1.a , O1.A, O2.A, O1.b, O1.c, O3.a,  
   O4.a, O2.b}, 
 A6 = {O1.a , O1.A, O2.A, O1.b, O1.c, O3.a,  
   O4.a, O2.b, O2.c}, 
 A7 = {O1.a , O1.A, O2.A, O1.b, O1.c, O3.a,  
   O4.a, O2.b, O2.c, O2.a}. 

IV. EXTENSION OF COMPUTATIONAL NETWORKS  
Computational Networks with simple valued variables and 

networks of computational objects can be used to represent 
knowledge in many domains of knowledge. The basic 
components of knowledge consist of a set of simple valued 
variables and a set of computational relations over the 
variables. However, there are domains of knowledge based on 
a set of elements, in which each element can be a simple 
valued variables or a function. For example, in the knowledge 
of alternating current the alternating current intensity i(t) and 
the alternating potential u(t) are functions. It requires 
considering some extensions of computational networks such 
as extensive computational networks and extensive 
computational objects networks that are defined below.  

Definition 4.1: An extensive computational network is a 
structure (M, R) consisting of two following sets: 

- M = Mv ∪ Mf is a set of attributes or elements, 
with simple valued or functional valued.  
Mv = {xv1, xv2, …, xvk} is the set of simple valued 
variables. Mf  = {xf1, xf2, … xfm} is the set of 
functional valued elements. 

-  R = Rvv ∪ Rfv ∪ Rvf ∪ Rfvf is the set of deduction 
rules, and R is the union of four subsets of rules 
Rvv, Rfv, Rvf, Rfvf. Each rule r has the form  
r: u(r)→v(r), with u(r) is the hypotheses of r and 
v(r) is the conclusion of r. A rule is also one of 
the four cases below. 
• Case 1: r ∈ Rvv. For this case, u(r) ⊆ Mv and 

v(r) ⊆ Mv. 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:8, 2009

2053

 

 

• Case 2: r ∈ Rfv. For this case, u(r) ⊆ Mf and 
v(r) ⊆ Mv. 

• Case 3: r ∈ Rvf. For this case, u(r) ⊆ Mv and 
v(r) ⊆ Mf. 

• Case 4: r ∈ Rfvf. For this case, u(r) ⊆ M, u(r)∩ 
Mf ≠ ∅, u(r)∩ Mv ≠ ∅, and v(r) ⊆ Mf. 

Each rule in R has the corresponding computational 
relation in the set F = Fvv ∪ Ffv ∪ Fvf ∪ Ffvf. 

Definition 4.2: An extensive computational Object 
(ECom-Object) is an object O has structure including:  

(1) A set of attributes Attr(O) = Mv ∪ Mf, with Mv 
is a set of simple valued variables; Mf is a set of 
functional variables. Between the variables (or 
attributes) there are internal relations, that are 
deduction rules or the computational relations. 

(2) The object O has behaviours of reasoning and 
computing on attributes of objects or facts such 
as: 
• Find the closure of a set A ⊂ Attr(O). 
• Find a solution of problems which has the 

form A→B, with A ⊆ Attr(O) and B ⊆ 
Attr(O).  

• Perform computations. 
• Consider determination of objects or facts. 

Definition 4.3: An extensive computational objects 
network is a model (O, M, F, T) that has the components 
below. 

(1) O = {O1, O2, …, On} is the set of extensive 
computational objects. 

(2) M is a set of object attributes. We will use the 
following notations: 
Mv(Oi) is the set of  simple valued attributes of 
the object Oi, Mf(Oi) is the set of functional 
attributes of Oi, M(Oi) = Mv(Oi) ∪ Mf(Oi),  
M(O) = M(O1) ∪ M(O2) ∪ … ∪ M(On), and  
M ⊆ M(O). 

(3) F = F(O) is the set of the computational relations 
on attributes in M and on objects in O.  

(4) T={t1, t2, …, tk} is set of operators on objects. 
On the structure (O, T), there are expressions of 

objects. Each expression of objects always has its 
attributes as if it is an object. 

The extensions of the computational networks are 
more powerful in designing knowledge bases in reality. 

V. CONCLUSION AND FUTURE WORKS 
Computational Networks with simple valued variables and 

networks of computational objects are useful models. It can be 
used to represent knowledge in many domains of knowledge. 

The methods and techniques for solving the problems on the 
networks will be useful tool for design intelligent systems, 
especially systems that can solve problems based on a 
knowledge base.  

There are domains of knowledge with functional attributes 
such as knowledge of alternating current in physics. This 
motivates another extensions of the above computational 
networks presented in the previous sections. The new 
computational networks with its simple valued variables and 
functional variables will be considered. Also, the 
computational objects in future works will have functional 
attributes. On the network of computational objects, operators 
will be considered. Such future works on computational 
networks make them more powerful for representing 
knowledge in practice. 

REFERENCES   
[1] Stuart Russell & Peter Norvig, Artificial Intelligence – A modern 

approach (second edition), Prentice Hall, 2003. 
[2] John F. Sowa. Knowledge Representation: Logical, Philosophical and 

Computational Foundations, Brooks/Cole, 2000 
[3] George F. Luger, Artificial Intelligence: Structures And Strategies For 

Complex Problem Solving, Addison Wesley Longman, 2008. 
[4] Chitta Baral, Knowledge Representation, Reasoning and Declarative 

Problem Solving, Cambridge University Press, 2003. 
[5] Do Van Nhon, “A Program for studying and Solving problems in Plane 

Geometry”, in Proc. Conf. on Artificial Intelligence 2000, Las Vegas, 
USA, 2000, pp. 1441-1447. 

[6] Do Van Nhon, “A system that supports studying knowledge and solving 
of analytic geometry problems”, in Proc. 16th World Computer 
Congress 2000 conf. on Education Uses of Information and 
Communication Technologies, Beijing, China, 2000, pp. 236-239. 

[7] Nhon Do, An ontology for knowledge representation And Applications. 
Waset, International Conference on Data, Information and Knowledge 
Management, Singapore, 2008. 

[8] Michel Chein & Marie-Laure Mugnier, Graph-based Knowledge 
representation: Computational foundations of Conceptual Graphs, 
Springer-Verlag London Limited 2009. 

[9] Frank van Harmelem & Vladimir & Bruce, Handbook of Knowledge 
Representation, Elsevier, 2008. 

[10] F. Lehmann, Semantic Networks in Artificial Intelligence, Elsevier 
Science Ltd, 2008. 

[11] Amit Konar, Computational Intelligence : Principles, Techniques and 
Applications, Springer-Verlag Berlin Heidelberg, 2005. 

[12] Leszek Rutkowski, Computational Intelligence: Methods and 
Techniques, Springer-Verlag Berlin Heidelberg, 2008. 

[13] ToshinoriMunakata, Fundamentals of the New Artificial Intelligence: 
Neural, Evolutionary, Fuzzy and More, Springer-Verlag London 
Limited, 2008. 

[14] M. Tim Jones, Artificial Intelligence : A System Approach, Infinity 
Science Press LLC, 2008. 

[15] Nhon Do & Tuyen Tran T. & Phan Truong H., Design method for 
Knowledge Base Systems in Education using COKB-ONT. Waset, 
International Conference on Communication and Information 
technologies in Education, Thailand, 2008. 

 
 
 
Nhon Van Do is currently a senior lecturer in the faculty of Computer Science 
at the University of Information Technology, Ho Chi Minh City, Vietnam. He 
got his MSc and Ph.D. in 1996 and 2002 respectively, from The University of 
Natural Sciences – National University of Ho Chi Minh City. His research 
interests include Artificial Intelligence, computer science, and their practical 
applications, especially intelligent systems and knowledge base systems. 


