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Abstract—A minimal complexity version of component mode 

synthesis is presented that requires simplified computer 
programming, but still provides adequate accuracy for modeling 
lower eigenproperties of large structures and their transient 
responses. The novelty is that a structural separation into components 
is done along a plane/surface that exhibits rigid-like behavior, thus 
only normal modes of each component is sufficient to use, without 
computing any constraint, attachment, or residual-attachment modes. 
The approach requires only such input information as a few (lower) 
natural frequencies and corresponding undamped normal modes of 
each component. A novel technique is shown for formulation of 
equations of motion, where a double transformation to generalized 
coordinates is employed and formulation of nonproportional damping 
matrix in generalized coordinates is shown. 
 

Keywords—component mode synthesis, finite element models, 
transient response, nonproportional damping 

I. INTRODUCTION 
OR large structures, when it is necessary to modify the 
structure many times (like in optimization tasks) and run 

eigensolution each time, it is expedient to use a component 
mode synthesis (CMS) technique. This technique constructs a 
reduced eigenvalue problem that approximates the original 
(large) eigenvalue problem in terms of the lowest eigenvalues 
and normal modes. Upon solving this reduced eigenproblem, 
one can find the eigenvalues and construct the normal modes 
(pertaining to the whole structure) and they can be used 
further, for example in a transient analysis. 

There are different CMS methods described in literature 
that can be classified on properties of the interface (the 
boundary between components), namely: 1) fixed interface 
methods [1], [2], where normal modes of constrained (at the 
interface d-o-fs) components are used; 2) free interface 
methods [3] - [9], where normal modes with free at the 
interface d-o-fs are used and 3) hybrid versions [10], [11], 
[12], where component’s normal modes are obtained with  
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some interface d-o-fs constrained and some free. In [13], all 
the versions are described and a method how to improve the 
accuracy by solving iteratively the condensed eigenvalue 
problem is shown. A free-interface method, where higher-
order residual attachment modes are included is shown in 
[14]. A CMS version with a combination of interface types 
(free-free, fixed-fixed, fixed with overlapping elements) is 
considered in [15]. A fixed interface method was considered 
in [16], where of a residual term is employed (representing the 
effect of normal modes not retained) and where an iterative 
technique is employed for nonlinear equations of modal 
synthesis. Structures with general (nonproportional) damping 
were considered in [17], where complex residual flexibility 
modes, state-space free-free dynamic modes were used. 
Structures with incompatible substructure interfaces were 
considered in [18], where a hybrid Craig-Bampton method 
was described. In all these sources, along with the 
substructure’s normal modes (eigenvectors), an additional set 
of modes (or basis vectors) was employed, namely either 
constraint modes, or attachment modes, or residual-attachment 
modes. These extra modes require knowledge of stiffness 
matrices (in physical coordinates) of each component, and 
additional static calculations using a finite element software, 
or analyst’s own code are required to calculate those modes. It 
appears that there was no discussion in literature for what 
cases (structures), these extra modes can be safely neglected. 

A novelty approach will be demonstrated in this paper, 
where there is no need to compute any constraint, attachment, 
or residual-attachment modes, and no need to have stiffness, 
or mass matrices of the components in physical coordinates. 
For brevity, a two-component approach is shown here. The 1st 
component embraces most of the structure (the large 
component) and 2nd component is a small size component – 
the component that embraces the area where all modifications 
are to be made, plus possibly some surrounding area. The 
interface between these two components is chosen along a 
plane/surface that is considered stiff enough to assume a rigid-
like behavior (or very small deformation).  In this case, the 
motion of the whole structure can be adequately spanned by 
the space of lower normal modes of these two components 
with the free interface (rigid-body modes of components are 
included). The feasibility of selection of such a rigid-like 
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interface depends on the structure’s stiffness distribution and 
it is up to the analyst’s intuition to choose a stiff area where to 
split the structure into two components. For example, presence 
of some sort of stiffeners (stiffening rings, ribs, or plates) in 
the structure could a be good location for splitting.  

The suggested here approach requires only such input 
information as a few lower natural frequencies of each 
component and corresponding mass-normalized normal 
undamped modes of each component. This input can come 
from an experimental modal survey data, or provided to the 
analyst from FE software normal mode analysis (like 
NASTRAN etc). 

All the rest calculations can be done by either analyst’s own 
code, or in MATLAB. Note that in all formulated equations, 
the values of component’s normal mode at certain d-o-fs 
(only) will be needed, and not the whole component’s normal 
mode. These d-o-fs are: 1) interface d-of-fs (where the 
components are split), 2) d-of-fs where the external forces are 
applied, 3) d-of-fs where the output of 
displacement/velocity/acceleration is requested, and 4) d-o-fs 
to which the dashpots are connected. For all other d-o-fs, the 
component’s normal mode values are not needed and thus no 
need to be stored that leads to convenience in operating with 
small size files. As it will be seen later, the method will match 
the exact results (NASTRAN unsplitted model solution) very 
well, and as to the analyst’s effort – it is less costly than all 
other CMS versions. 
Following the CMS method presentation, a transient response 
solution technique is demonstrated, where a double 
transformation to the generalized coordinates is employed. 
Also a technique that creates a nonproportional damping 
matrix in the generalized coordinates for the structure with 
dashpots is presented.  Numerical results (structure’s natural 
frequencies, mode shapes, physical displacements/ 
accelerations in transient analysis) are obtained for an 
example of two-component structure.  

II. COMPONENT MODE SYNTHESIS TECHNIQUE 
The CMS technique shown below is as follows in [4], 

except that the residual-attachment modes are not included 
and a state-space representation is not used. The state-space 
representation was used in [4], because the purpose was to 
conduct a complex eigenvalue analysis. In this paper, the 
objective is to obtain natural frequencies (not complex 
eigenvalues) and lower undamped normal modes of the whole 
structure, that will be used in a transient analysis (to 
approximate the solution) for the structure with 
nonproportional damping. 

An equation of free vibration (in one of natural modes  ) in 
physical coordinates pertaining to a FE model of undamped 
structure is written as 

                           0)( 2 =+− ϕω KM                           (1) 
that constitutes an eigenvalue problem. Let’s split the 

structure into two substructures (components) that have mass 
and stiffness matrices 1m , 1k , 2m , 2k  respectively and there 

will be interface loads at the separation border. Then one can 
re-write the equation of free vibration (1) for the splitted up 
structure as shown below: 
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or in abbreviated form 
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where ⎥
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ϕ  is the normal mode (column) with   

related to physical displacements of the 1st component and   
related to physical displacements of the 2nd component;   are 
columns of nodal loads at the interface between these two 
components (not to confuse with external loads). Note that 
since a free vibration motion is considered in this section, 
there are no external loads acting on the structure. 

One can introduce an approximation by transformation to 
modal coordinates: 
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where 21 ,ΦΦ  are mass-normalized normal modes of 1st 
and 2nd free-interface components (rigid body modes are 
included, if a component comes as free-free) and  

Tppp ][ 21=  are modal coordinates. 

At the interface between two components, a condition of 
compatibility is used, i.e. the equality of physical 
displacements. Assigning all interface degrees of freedom in 
matrices 21 ,ΦΦ  as with subscript “B” (meaning “border”) 
and internal degrees of freedom with subscript “i”, one can re-
write matrix 1Φ  as 
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Thus the compatibility equation can be written as 
                            2211 pp BB Φ=Φ  
Let’s say, there are B degrees-of-freedom at the interface, 

then, for example for 2nd component, one can select B 
dependent coordinates (among those  2p  coordinates) and re-
write the above expression in other form (indeed it is assumed 
that the size of column   2p > B ). 
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BB ppp 222211 Φ+Φ=Φ                       (4) 
where superscript “dep” stands for dependent coordinates 

and “ind” stands for independent ones. Note that matrix dep
B2Φ   

will be a square matrix.  Now one can express the dependent 
ones from (4) as                                            
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Therefore the column of generalized coordinates 
Tppp ][ 21= can be expressed (taking into account the 

compatibility equation (5)) as 
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or introducing a new matrix notation β , it can be written 
in abbreviated form 
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Let’s denote this reduced (final) column of generalized 
coordinates as  q  

q
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then one can re-write (3) as 
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Now substituting (6) in (2) and pre-multiplying by TT Φ̂β   
one obtains 

                           0ˆ)ˆˆ(ˆ 2 =Φ+−Φ qKMTT βωβ         (7) 
Notice that due to equality of displacements and opposite 

forces at the interface, the right-hand side of equation (7) is 0 
(see [4] for details). Introducing new matrix notations A and 
B, the equation (7) can be re-written as a reduced eigenvalue 
problem:  

                                 0)( =+− qABλ                              (8) 

where BMTT =ΦΦ ββ ˆˆˆ ,  AKTT =ΦΦ ββ ˆˆˆ , 2ωλ =    is an 
eigenvalue and q  is the corresponding eigenvector. Matrices 
A and B are real symmetric matrices, the eigenvalues  λ  will 
be real and positive and eigenvectors will be all real. The size 
of this egenvalue problem (8) is equal to the number of modes 
chosen for the 1st component plus the number of independent 
modes chosen for the 2nd component. 

Upon modifying 2nd component - that was chosen as small 
one - no need to solve the large eigenvalue problem (1), but 
instead just find new 2Φ   (normal modes of 2nd component), 
substitute them in (3) and (6) and then solve the reduced 
eigenvalue problem (8). Notice that in matrices  1Φ  and 2Φ    
(components’ normal modes) only the values for certain 
physical degrees of freedom are necessary to know, namely, 
for interface d-of-fs (where the components are split), and (as 
it will be seen later) for d-of-fs where the external forces are 
applied; where the response (displacements, velocities, or 
accelerations) need to be determined and where dashpots are 
present (connecting the specified degrees of freedom). 

Also notice that in (7), the following holds 
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since normal modes of each component are assumed mass-
normalized and 
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where 1
2 ][ kω  and 2

2 ][ kω  are diagonal sub-matrices with 
eigenvalues at the diagonal for the 1st and 2nd components. 
Therefore no need to know the mass and stiffness matrices of 
each component in physical coordinates. 

III. TRANSIENT RESPONSE CALCULATION 
After the eigenproblem (8) solved, i.e. all eigenvalues  and 

eigenvectors   are found, one can begin a transient analysis. 
The transient response is due to some external forces (not to 

confuse with the interface forces). Let’s denote these external 
forces with capital F(t) and let’s write the equation of motion 

of two components in splitted up form again, where the 
external forces have been added:                   
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Now, one can introduce a transformation using a 2nd set of 
coordinates (one can call them as final generalized 
coordinates)  nii ,...,2,1, =α  
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where matrix Q  is a square matrix consisting from 

eigenvectors kq  found in (8). Substituting (10) in (9) and 
then pre-multiplying (9) by basis functions 
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which is actually a Galerkin’s method application, one 
obtains 

---- see formula (*) in Appendix ---- 
 

which is (using notations adopted in (7) and (8)) will be            
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If eigenvectors Q  are B-normalized (one can always 

arrange this normalization), then matrix QBQT   will be a 

unit matrix and matrix QAQT  will be a diagonal with 

eigenvalues kλ  from (8) at the diagonal. Therefore, equation 
(11) can be written as 
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Integrating (12) with initial conditions  0)0(,0)0( == αα & , 
one can find these final generalized coordinates  

)(),....,(1 tt nαα . Then one can recover the physical 
displacements of the system by using (10). 

Addition of modal global damping to each of the uncoupled 
equation in (12) can be done by adding a viscous term: 

 
---- see formula (13) in Appendix ---- 

 
where ii λω =   and  iξ  are damping coefficients. 

In case, if there are local dashpots in the system, then the 
following term needs to be added to the left side of equation 
(13): 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎦

⎤
⎢
⎣

⎡
Φ

Φ
⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡

Φ
Φ

)(

)(

0
0

0
0

0
0 1

2

1

2

1

2

1

t

t
Q

c
c

Q

n

T

T
TT

α

α
ββ

&

M

&
         (14) 

where 21 ,cc  are damping matrices (non-diagonal) of the 
1st and 2nd components due to presence of dashpots. In this 
case the system of differential equations becomes coupled. 
Formulation of the product  
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will be shown in the next section. In this case, one need 
additionally to know the values of eigenvectors 21 ,ΦΦ   at 
the corresponding pairs of degrees of freedom where dashpots 
are present and values of dashpots [force/velocity], indeed. In 
case, if in addition to the global modal damping and discrete 
dashpots, there are some viscoelastic elements in the structure 
(not to confuse with regular viscous dashpots), then equations 
of motion (13) can be re-written using a space-state 
presentation, like for example shown in [19]. 
IV. FORMULATION OF NONPROPORTIONAL DAMPING MATRIX 

IN CASE OF DASHPOTS PRESENCE 

Creation of the modal damping matrix 1111
~ ΦΦ= cc T   for 

the 1st component (in equation (15)) is done upon given pairs 
of physical degrees of freedom connected by the 
corresponding dashpots. For 2nd component, the procedure is 
exactly similar. Let’s assume that we have retained p lower 
modes and total number of physical degrees of freedom of the 
component is n. Let’s introduce one dashpot of value c that 
connects the physical degrees of freedom “i” and “k”. So to 
begin with, the matrix    in physical coordinates is everywhere 
0, except locations (i,i), (i,k), (k,i) and (k,k) as shown below 
by “ ” and “ ” (under the matrix   and to the right of it). As a 
result of multiplication, the output matrix   (size p x p) will 
have form as shown below 

 
----  see Formula (**) in Appendix ---- 

 

Introduction of another dashpot will produce a similar 
matrix as above. These two matrices then need to be added to 
each other. Therefore introduction of arbitrary number of 
dashpots can be done in such way. Thus in order to formulate 
a product in (15) - and consequently the term (14) - one need 
to know the values of components’ normal modes at degrees 
of freedom where dashpots are connected. 

Integration of equations (13) (with (14) added to the left 
side in general) then can be done. The structure’s physical 
response is recovered by using (10) afterwards. 

V.  METHOD IMPLEMENTATION AND NUMERICAL RESULTS 
A computer code was written that implements the approach 

described in the previous sections. It was termed as 
“CMSDYN” code and it can be run on Unix, or PC. On Unix, 
this code (a shell script file) executes a series of commands, 
and on PC, this code is a batch file that executes analogous 
commands. One of the commands launches a commercial 
program (NASTRAN) to compute the normal modes and 
natural frequencies for the 1st (large) component (just one 
time solution) and 2nd (small) component (can be multiple 
solutions). Another command launches a FORTRAN code 
that contains the calculations described in the above sections. 
For the matrix inversion in equation (5), the subroutine “INV” 
from [20] was used and for eigenproblem solution (8), “DQZ” 
subroutine was used, also from [20].  

For illustration of numerical results and CMSDYN code’s 
validity, a free-free large FE model of Ares I structure (a 
future space exploration vehicle) was considered (Figure 1), 
where three concentrated masses (chute masses) are attached 
by linear springs and dashpots to the vehicle’s body as shown 
in Figure 2. The node “A” in Figure 2 is an interface node, 
where the structure will be split. As a 2nd (modifiable) 
component, those three springs with concentrated masses 
(chute masses) were chosen, since their stiffness was a 
parameter of optimization. All the rest of the structure was 
selected as the 1st (large) component. NASTRAN program 
was used as an eigensolver to provide the natural frequencies 
and values of normal modes at the required degrees of 
freedom for the 1st and 2nd components. For the 1st 
component (about 700,000 degrees of freedom), it was 
necessary to perform a normal mode analysis only once, since 
this component was not a subject to change. For the 2nd 
component (small size component), the NASTRAN normal 
mode analysis can be done numerous times (no computer time 
issue). 

The goal of optimization was to reduce the acceleration 
level at the astronaut seat (see Figure 1) by only varying the 
connection (stiffness and dashpot) of the main chutes to the 
vehicle. Notice that these two locations (astronaut seat and 
main chute connections) are quite far apart. Indeed, one may 
suggest an alternative option, like introducing dampers at the 
seats directly, however for this study it was not specified as 
the objective.  

It was known that the acceleration level at the seat location 
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was sensitive to the axial loading at the frequency coinciding 
with the 2nd axial natural frequency of the vehicle (around 
12.45 Hz). Two axial loads, resulting from 1 psi pressure at 
the forward and aft domes (due to final seconds of propellant 
burn out), were applied and they are as shown in Figure 1 (red 
arrows). These forces follow one sinusoidal loading at 
frequency of 12.45 Hz (exciting the 2nd axial normal mode) 
and act for about 2 sec. The same direction of these loads was 
specified, because it corresponded to the 1st acoustic mode 
data. 

At first, a normal mode analysis was performed for the 
whole (unsplit) structure by using NASTRAN. The obtained 
natural frequencies are shown in Figure 3 for two 
configurations, namely when the chute masses are connected 
by stiff (rigid) elements and when they are connected to the 
vehicle by flexible springs that have 12.45 Hz natural 
frequency (for the given chute mass). One can see from Figure 
3, that a difference in natural frequencies begins from 
frequency # 33 (12.5 Hz vs 13.2 Hz). Also note that the first 6 
natural frequencies are zeros, because the structure is free-free 
(not constrained).  

Then CMSDYN code was run for these two configurations. 
A comparison between the natural frequencies obtained by 
NASTRAN (exact solution) and CMSDYN code is shown in 
Figures 4 and 5. NASTRAN produced natural frequencies for 
the whole (unsplit) structure. One can see a very good match 
for the first 90 natural frequencies between these two 
programs that validates the assumption for the case of rigid-
like interfaces: using only lower normal modes of each 
component is sufficient, thus no need to introduce any 
additional constraint, attachment, or residual-attachment 
modes. In terms of computer time, the NASTRAN 
eigensolution for unsplit model would take about 2 hours each 
time, while CMSDYN eigensolution takes only 1 minute each 
time (upon changing the 2nd component for this example). 

After the CMS part (normal mode analysis) was finished, a 
transient analysis can be done by integrating of equations (13) 
with the specified load history applied to the structure and 
with zero initial conditions. A Runge-Kutta 4th order of 
accuracy integrator was used. A comparison of NASTRAN 
(unsplit model) transient results with CMSDYN code results 
was done as well. Note that numerous values of stiffness for 
springs (in Figure 2) can be chosen and structure’s natural 
frequencies and transient solution results can be obtained 
quickly. Here, for the sake of brevity, the results are shown 
for only two configurations: stiff connection and 12.45 Hz 
springs connection. In both calculations (NASTRAN and 
CMSDYN code), a modal damping of 1 % was assumed for 
all modes. In all graphs below by “acceleration” it is implied 
the axial (along the vehicle) component of acceleration (the 
dominant one), since the other two are much smaller. 

For the case of stiff connection, the acceleration (in terms 
of g) vs time at the astronaut seat is plotted in Figure 6. One 
can see a perfect match of the results between NASTRAN 
transient solution and CMSDYN solution, since the graphs are 
indiscernible. 

The acceleration of the main chute node is plotted in Figure 
7. One can see a good match of the results between 
NASTRAN transient solution and CMSDYN solution. For 
this case, the chute acceleration is quite low, since the chute 
masses are connected by stiff springs to the vehicle. 

For the 12.45 Hz springs connection configuration, the 
acceleration at the astronaut seat is plotted in Figure 8. One 
can see a good match of the results between NASTRAN  and 
CMSDYN solutions, since the graphs are basically on top of 
each other. 

The acceleration of the main chute node is plotted in Figure 
9 for the 12.45 Hz springs connection configuration. The 
acceleration level becomes large, since the chute masses are 
connected by 12.45 Hz springs that are excited by the external 
force frequency of 12.45 Hz. One can see a good match of the 
results between NASTRAN and CMSDYN solutions. 

For the case of 12.45 Hz springs, when the chute mass 
acceleration becomes large (Figure 9), it may be expedient to 
introduce dashpots connecting the chutes to the vehicle. Note 
that it is done in addition to the global modal damping of 1 % 
assumed earlier for the whole structure. The value of dashpot 
was chosen as C = 5, or 10, or 100 lbf/(inch/sec). The 
formulation of non-diagonal (nonproportional) damping 
matrix was shown in section 4. Comparison of CMSDYN 
code with NASTRAN (unsplit structure) results is shown for 
the case of dashpot C=100 lbf/(inch/sec) in Figure 10 (seat 
node) and Figure 11 (chute node). One can see good matching 
of results, those graphs are basically on top of each other. For 
other cases of dashpots C=5; 10 lbf/(inch/sec), matching was 
good as well, though the graphs for these cases are omitted 
here for the sake of brevity. 

The results (transient response graphs) of CMSDYN code 
are shown below in Figure 12 and 13 for different values of 
dashpot. One can see that the acceleration at the astronaut seat 
depends on the dashpots introduced at the main chute 
connections. It is obvious that the greater damping at the chute 
connections, the lesser accelerations/velocities of these chutes 
(see Figure 13), thus the lesser kinetic energy they (main 
chutes) will absorb. Therefore, the seat acceleration goes up 
with the increase of damping at the chute connections, as one 
can see in Figure 12. The reason for introducing of dashpots at 
the chute connections can be only if there is a need to decrease 
the level of vibration of the chutes. 

The summary of results in terms of maximum accelerations 
(taken from graphs in Figures 6-13) at the seat and chute 
locations is shown in Table 1 (CMSDYN code) and Table 2 
(NASTRAN, unsplit model) for two configurations (main 
chutes connected by rigid and 12.45 Hz springs). One can see 
a good correspondence of accelerations between these two 
solvers. Some difference is explained by the fact that 
NASTRAN (unsplit model) solution has more high modes 
included which contribute to the response (and it is more 
visible at the lower values of dashpots).  One can see that a 
stiff connection of main chutes gives 7.698 g maximum 
acceleration at the astronaut seat, while introduction of 
flexible (12.45 Hz springs) main chutes connection decreases 
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it to 4.654 g (Table 2) and at the same time increases the 
acceleration of chutes to 7.098 g (with no dashpots).  If the 
chute acceleration needs to be lower than 7.098 g, then one 
can select, for example, a configuration with 12.45 Hz 
springs, and dashpot C = 5, 10, or 100.  The value of critical 
damping coefficients ξ (corresponding to dashpot values C) is 
provided in Tables 1, 2, just to show the damping level for 
those 12.45 Hz springs (do not confuse with the global modal 
damping of 1 % that exists in addition).  Note that producing 
NASTRAN (unsplit model) transient solution each time (upon 
main chute springs modification) would take 2 hours, while 
CMSDYN code produces a similar result in a matter of 1-2 
minutes.   

VI. CONCLUSION 
A minimal complexity version of CMS that requires 

simplified computer programming (saving analyst’s time and 
effort) and provides accurate determination of lower natural 
frequencies/mode shapes of large structures and their transient 

responses was presented. A novel technique for formulation of 
equations of motion for transient response was demonstrated, 
where a double transformation to generalized coordinates was 
employed. Also a technique that creates a nonproportional 
damping matrix in the generalized coordinates for the 
structure with dashpots was shown. 

The presented method was implemented as a computer code 
(UNIX shell script, or PC batch file) that yields significant 
computer time savings compared with the solution for unsplit 
FE models. The results of this code were compared with 
NASTRAN simulation results (for unsplit models) for several 
cases and they matched them very well. 

 

APPENDIX 
Referenced Equations (*), (13), (**) and all Figures are 

presented here. 
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Fig. 1 FE model (unsplit) of the vehicle 
 

 
Fig. 2 Connection of main chutes to the vehicle 
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Fig. 3 NASTRAN (unsplit model) natural frequencies for two configurations: chutes connected by stiff springs and by 12.45 Hz springs 
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Fig. 4 Comparison of natural frequencies, stiff spring connection configuration 
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Fig. 5 Comparison of natural frequencies, 12.45 Hz springs connection configuration 

 

 
Fig. 6 Seat acceleration, stiff springs connection configuration
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Fig. 7 Chute acceleration, stiff spring connection configuration 

 

 
Fig. 8 Seat acceleration, 12.45 Hz springs connection configuration 
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Fig. 10 Chute acceleration, 12.45 Hz springs connection configuration 

 

 
Fig. 11 Seat acceleration, 12.45 Hz springs configuration with dashpot C=100 lbf/(inch/sec), CMSDYN result vs NASTRAN (unsplit) result 
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Fig. 12 Chute acceleration, 12.45 Hz springs configuration with dashpot C=100 lbf/(inch/sec), CMSDYN result vs NASTRAN (unsplit) 

result 
 

 
Fig. 13 Seat acceleration, 12.45 Hz springs configuration with different dashpot values C, CMSDYN result 
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Fig. 14 Chute acceleration, 12.45 Hz springs configuration with different dashpot values C, CMSDYN result 

 
TABLE  I 

CMSDYN TRANSIENT SOLUTION RESULTS FOR TWO CONFIGURATIONS 

 12.45 Hz springs connection 
configuration Stiff springs connection configuration 

Dashpot [lbf/(inch/sec)] Max Seat 
acceleration, g 

Max Chute 
acceleration, g 

Max Seat 
acceleration, g  

Max Chute 
acceleration, g 

C = 0 (ξ = 0.) 4.493 6.710 

C = 5 (ξ = 0.0044) 4.744 5.721 

C = 10 (ξ = 0.0088) 4.951 4.985 

C = 100 (ξ = 0.088) 6.827 1.532 

 

7.698 0.338 
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TABLE  II 
NASTRAN (UNSPLIT MODEL) TRANSIENT SOLUTION RESULTS FOR TWO CONFIGURATIONS 

 12.45 Hz springs connection 
configuration Stiff springs connection configuration 

Dashpot [lbf/(inch/sec)] Max Seat 
acceleration, g 

Max Chute 
acceleration, g 

Max Seat 
acceleration, g  

Max Chute 
acceleration, g 

C = 0 (ξ = 0.) 4.654 7.098 

C = 5 (ξ = 0.0044) 4.870 6.040 

C = 10 (ξ = 0.0088) 5.050 5.245 

C = 100 (ξ = 0.088) 6.825 1.584 

 

7.698 0.358 

 
 

REFERENCES  
 

 

[1]  Hurty W.C. Dynamic analysis of structural systems using component 
modes, AIAA Journal, 1965; 3 (4): 678--685. 

[2] Craig R.R. and Bampton M.C., Coupling of Substructures for Dynamic 
Analysis, AIAA Journal, 1968; 6 (7): 1313—1319. 

[3] Craig R.R. and Ni Z. Component mode synthesis for model order 
reduction of nonclassically damped systems, Journal of Guidance, 
Control and Dynamics, 1989; 12 (4): 577--584. 

[4] Muravyov A.A., Hutton S.G. Component mode synthesis for 
nonclassically damped structures, AIAA Journal, 1996; 34 (8): 664--
1670.  

[5] Goldman R.L., Vibration Analysis by Dynamic Partitioning, AIAA 
Journal, 1969; 7(6): 1152—1154.  

[6] Hintz R.M., Analytical Methods in Component Modal Synthesis, AIAA 
Journal, 1975; 13(8): 1007—1016.  

[7] Dowell E.H., Free Vibrations of an Arbitrary Structure in Terms of 
Component Modes, Journal of Applied Mechanics, 1972; Vol. 39: 727—
732. 

[8] Hasselman T.K., Kaplan A., Dynamic Analysis of Large Systems by 
Complex Mode Synthesis, Journal of Dynamic Systems, Measurement, 
and Control, 1974; Vol. 96, Series G: 327—333. 

[9] B. Yin, W. Wang, Y. Jin, "The application of component mode synthesis 
for the dynamic analysis of complex structures using ADINA", 
Computers and Structures, 64, 931-938, 1997.  

[10] Hou S., Review of Modal Synthesis by Dynamic Partitioning, The Shock 
and Vibration Bulletin, 1969; No. 40, pt. 4; 25—39. 

[11] MacNeal R.H., A Hybrid Method of Component Mode Synthesis, 
Journal of Computers and Structures, 1971; 1(4): 581—601. 

[12] Rubin S., Improved Component-Mode Representation for Structural 
Dynamic Analysis, AIAA Journal, 1975; 13(8): 995—1006. 

[13]  M.P. Singh, L.E. Suarez, "Dynamic condensation with synthesis of 
substructure Eigenproperties", Joumal of Sound and Vibration, 159, 139-
155, 1992.  

[14]  J.H. Kang, Y.Y. Kim, "Field-consistent higher-order free-interface 
component mode synthesis", International Journal for Numerical 
Methods in Engineering, 50, 595-610, 2001.  

[15] B. Biondi, G. Muscolino, "Component-mode synthesis methods variants 
in the dynamics of coupled structures", Meccanica, 35, 17-38, 2000.  

[16] J.B. Qiu, Z.G. Ying, F.W. Williams, "Exact modal synthesis techniques 
using residual constraint modes", International Journal for Numerical 
Methods in Engineering, 40, 2475-2492, 1997.  

[17] A. de Kraker, D.H. van Campen, "Rubin's CMS reduction method for 
general state-space models", Computers and Structures, 58, 597-060, 
1996.  

[18] C. Farhat, M.Geradin, "On a component mode synthesis method and its 
application to incompatible substructures", Computers and Structures, 
51, 459-473, 1994.  

[19] Muravyov A.A. Forced vibration responses of a viscoelastic structure, 
Journal of Sound and Vibration, 1998; 218 (5): 892--907. 

[20] Nicol T. (editor) UBC Matrix book (A guide to solving matrix 
problems), Computing Centre, University of British Columbia, 1982; 
Vancouver, B.C., Canada..  

 
 

 
 

 


