
International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:5, No:7, 2011

1021

The direct updating of damping and gyroscopic
matrices using incomplete complex test data

Jiashang Jiang, Yongxin Yuan

Abstract—In this paper we develop an efficient numerical method
for the finite-element model updating of damped gyroscopic systems
based on incomplete complex modal measured data. It is assumed
that the analytical mass and stiffness matrices are correct and only
the damping and gyroscopic matrices need to be updated. By solving
a constrained optimization problem, the optimal corrected symmetric
damping matrix and skew-symmetric gyroscopic matrix complied
with the required eigenvalue equation are found under a weighted
Frobenius norm sense.

Keywords—model updating, damped gyroscopic system, partially
prescribed spectral information.

I. INTRODUCTION

DAMPED gyroscopic systems are important class of
nonproportionally damped systems. They correspond to

spinning structures where the Coriolis inertia forces are taken
into account. Examples of such systems include helicopter
rotor blades and spin-stabilized satellites with flexible elastic
appendages such as solar panels or antennas[12, 16]. Using
finite element techniques, a damped gyroscopic system with
finitely many degrees-of-freedom can be modelled by a vector
differential equation in the second-order form given by

Maẍ(t) + (Ca +Ga)ẋ(t) +Kax(t) = 0, (1)

where Ma, Ca, Ga,Ka are n × n analytical mass, damping,
gyroscopic and stiffness matrices, respectively. The gyroscopic
matrix Ga is always skew-symmetric and, in many practical
applications, the mass matrix Ma is symmetric and positive
definite(Ma > 0), and Ka, Da are symmetric matrices. If the
gyroscopic force is not present, then the system is called non-
gyroscopic.

It is well-known that all solutions of the differential equation
of (1) can be obtained via the algebraic equation

(λ2Ma + λ(Da +Ga) +Ka)φ = 0. (2)

Complex numbers λ and nonzero vectors φ for which this re-
lation holds are, respectively, the eigenvalues and eigenvectors
of the system. It is known that the equation of (2) has 2n finite
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eigenvalues over the complex field, provided that the leading
matrix coefficient Ma is nonsingular.

Finite element model updating, at its ambitious, is used
to correct inaccurate analytical model by measured data,
such as natural frequencies, damping ratios, mode shapes and
frequency response function, which can usually be obtained
by physical vibration test. The need to solve the finite ele-
ment model updating problem arises from the fact that very
often natural frequencies and mode shapes (eigenvalues and
eigenvectors) of a finite element model described by (1) do
not match very well with experimentally measured frequencies
and mode shapes obtained from a real-life vibrating structure.
Thus, a vibration engineer needs to update the theoretical
finite element model to ensure its validity for future use.
Because of its immense practical importance, finite element
model updating problem has been well-studied in the past
twenty years, Baruch[1, 2], Berman[5, 6] and Wei[13-15]
considered variant aspects of finite element model updating
by using measured data for the case that Ca = 0 and Da = 0.
In view of in analytical model (1) for structure dynamics,
the mass and stiffness are, in general, clearly defined by
physical parameters. However, the effect of damping and
Coriolis forces on structural dynamic systems is not well
understood because it is purely dynamics property that can
not be measured statically. Many works have been done about
the damping matrix adjustment using measured data(see[3, 8,
9, 10]). Recently, Datta and Sarkissian[7, 11] have considered
the partial eigenvalue and eigenstructure assignment problems
using feedback control technique for the undamped gyroscopic
systems. However, the problem of updating the damping and
gyroscopic matrices simultaneously hasn’t been considered as
yet. In this paper we develop an efficient numerical method
for the finite-element model updating of damped gyroscopic
system based on incomplete complex modal measured data. It
is assumed that the analytical mass matrix Ma and stiffness
matrix Ka are correct and the damping and gyroscopic matri-
ces need to be updated. By solving a constrained optimization
problem, the optimal corrected symmetric damping matrix and
skew-symmetric gyroscopic matrix complied with the required
eigenvalue equation are found under a weighted Frobenius
norm sense. That is, we deal with the following problem:
Problem P. Let Λ ∈ Cm×m and Φ ∈ Cn×m be the measured
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eigenvalue and eigenvector matrices in the form

Λ = diag{λ1, λ2, · · · , λ2l−1, λ2l, λ2l+1, · · · , λm} ∈ Cm×m

(3)
and

Φ = [φ1, φ2, · · · , φ2l−1, φ2l, φ2l+1, · · · , φm] ∈ Cn×m, (4)

where Λ and Φ are closed under complex conjugation in
the sense that λ2j = λ̄2j−1 ∈ C, φ2j = φ̄2j−1 ∈ Cn for
j = 1, · · · , l, and λk ∈ R, φk ∈ Rn for k = 2l + 1, · · · ,m,
find real-valued symmetric matrix C and real-valued skew-
symmetric matrix G such that the penalty function

J = ‖W− 1
2 (C−Ca)W

− 1
2 ‖2+‖W− 1

2 (G−Ga)W
− 1

2 ‖2 (5)

is minimized, subject to

MaΦΛ
2 + (C +G)ΦΛ +KaΦ = 0 (6)

and
C = CT , G = −GT ,

where W is a symmetric positive definite weighting matrix.
In this paper we shall adopt the following notation.

Cm×n,Rm×n denote the set of all m × n complex and real
matrices, respectively. ᾱ denotes the conjugate of the complex
number α, AT , A+ and trA denote the transpose, the Moore-
Penrose generalized inverse and the trace of the matrix A,
respectively. In denotes the n × n identity matrix, and ‖ · ‖
stands for the matrix Frobenius norm.

II. SOLVING PROBLEM P

To begin with, we introduce a lemma(see [4]).
Lemma 1: If T ∈ Rm×m, S ∈ Rn×m then ZT = S has

a solution Z ∈ Rn×m if and only if ST+T = S. In this
case, the general solution of the equation can be described as
Z = ST+ +L(Im − TT+), where L ∈ Rn×m is an arbitrary
matrix.

Let αi = Re(λi) (the real part of the complex number λi),
βi = Im (λi) (the imaginary part of the complex number λi),
yi = Re(φi), zi = Im (φi) for i = 1, 3, · · · , 2l − 1. Define

Λ̃ = diag
{[

α1 β1

−β1 α1

]
, · · · ,

[
α2l−1 β2l−1

−β2l−1 α2l−1

]
,

λ2l+1, · · · , λm} ∈ Rm×m,
(7)

Φ̃ = [y1, z1, · · · , y2l−1, z2l−1, φ2l+1, · · · , φm] ∈ Rn×m. (8)

Then the equation of (6) can be written equivalently as

MaΦ̃Λ̃
2 + (C +G)Φ̃Λ̃ +KaΦ̃ = 0. (9)

In order to ensure that C = CT , G = −GT , we write C =
A + AT and G = B − BT , where A,B are arbitrary real-
valued matrices. From the function J and the equation of (9),

the following Lagrange function is constructed

f =
1

4
tr{W−1(A+AT − Ca)W

−1(A+AT − Ca)}

+
1

4
tr{W−1(BT −B +Ga)W

−1(B −BT −Ga)}
+tr{ΨT (MaΦ̃Λ̃

2 + (A+AT +B −BT )Φ̃Λ̃ +KaΦ̃)}.
The first two terms on the right are the Frobenius norm in
“trace” form (the 1

4 was added for convenience) and Ψ is the
Lagrange multiplier matrix.

The partial derivatives of f with respect to A, B and Ψ are
as follows
∂f

∂A
= W−1(A+AT − Ca)W

−1 +Ψ(Φ̃Λ̃)T + Φ̃Λ̃ΨT = 0,

(10)
∂f

∂B
= W−1(B −BT −Ga)W

−1 +Ψ(Φ̃Λ̃)T − Φ̃Λ̃ΨT = 0,

(11)
∂f

∂Ψ
= MaΦ̃Λ̃

2 +(A+AT +B−BT )Φ̃Λ̃+KaΦ̃ = 0. (12)

Notice that A and B appear in the form A+AT and B−BT

in the equations (10), (11) and (12) so C = A + AT and
G = B−BT are used in the remainder of this section. adding
equation (10) and (11) yields

Ψ(Φ̃Λ̃)T = −1

2
W−1(C +G− Ca −Ga)W

−1. (13)

Substituting equation (13) into (12) leads to

MaΦ̃Λ̃
2+(Ca+Ga)Φ̃Λ̃+KaΦ̃ = 2WΨ(Φ̃Λ̃)TW Φ̃Λ̃. (14)

For convenience, we shall denote

S = MaΦ̃Λ̃
2 + (Ca +Ga)Φ̃Λ̃ +KaΦ̃, T = (Φ̃Λ̃)TW Φ̃Λ̃.

(15)
By Lemma 1, the equation of (14) with respect to unknown

matrix Ψ ∈ Rn×m has a solution if and only if

ST+T = S. (16)

In this case, the general solution of (14) can be written as

Ψ =
1

2
W−1ST+ + L(Im − TT+) (17)

where L ∈ Rn×m is an arbitrary matrix. Substituting
equation (17) into (10) and (11), and recalling that (Im −
TT+)(Φ̃Λ̃)T = 0, leads to the solution to problem P as

C = Ca − 1

2
ST+(Φ̃Λ̃)TW − 1

2
W Φ̃Λ̃T+ST , (18)

G = Ga − 1

2
ST+(Φ̃Λ̃)TW +

1

2
W Φ̃Λ̃T+ST . (19)

Notice that if rank(ΦΛ) = m, then the matrix T is nonsingular,
in this case, the condition (16) is always satisfied and the
unique solution to problem P can be expressed as

C = Ca − 1

2
ST−1(Φ̃Λ̃)TW − 1

2
W Φ̃Λ̃T−1ST , (20)
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G = Ga − 1

2
ST−1(Φ̃Λ̃)TW +

1

2
W Φ̃Λ̃T−1ST . (21)

Based on the above discuss, we can state the following
algorithm.

Algorithm 1(An algorithm for solving Problem P).
1) Input Ma, Ka, Ca, Ga, Λ, Φ.
2) Separate matrices Λ and Φ into real parts and imaginary

parts resulting Λ̃ and Φ̃ given as in (7) and (8).
3) Select weighting matrix W .
4) Compute S, T according to (15).
5) If (16) holds, then continue, otherwise, go to 1).
6) According to (18) and (19) calculate C and G.
Example 1 Consider a five-DOF system modelled analyti-

cally with mass and stiffness matrices given by

Ma = diag{1, 2, 5, 4, 3},

Ka =

⎡
⎢⎢⎢⎢⎣

100 −20 0 0 0
−20 120 −35 0 0

0 −35 80 −12 0
0 0 −12 95 −40
0 0 0 −40 124

⎤
⎥⎥⎥⎥⎦ .

The measured eigenvalue and eigenvector matrices Λ and Φ
are given by

Λ = diag{−0.0077 + 10.2676i, −0.0077− 10.2676i,
−0.0024 + 7.6320i, −0.0024− 7.6320i},

Φ =

⎡
⎢⎢⎢⎢⎣

0.9670 + 0.0845i 0.9670− 0.0845i
−0.2207− 0.0748i −0.2207 + 0.0748i
0.0139 + 0.0120i 0.0139− 0.0120i

−0.0045− 0.0089i −0.0045 + 0.0089i
−0.0069 + 0.0546i −0.0069− 0.0546i

−0.0673− 0.4349i −0.0673 + 0.4349i
0.0205− 0.8815i 0.0205 + 0.8815i

−0.0402 + 0.1424i −0.0402− 0.1424i
0.0314− 0.0283i 0.0314 + 0.0283i

−0.0718 + 0.0034i −0.0718− 0.0034i

⎤
⎥⎥⎥⎥⎦ .

The estimated analytical damping and gyroscopic matrices are

Ca =⎡
⎢⎢⎢⎢⎣

0.0110 −0.0080 0 0 0
−0.0080 0.0140 −0.0035 0 0

0 −0.0035 0.0130 −0.0078 0
0 0 −0.0078 0.0135 −0.0090
0 0 0 −0.0090 0.0154

⎤
⎥⎥⎥⎥⎦ ,

Ga =⎡
⎢⎢⎢⎢⎣

0 0.5304 −0.0276 −0.0334 −0.9247
−0.5304 0 1.1740 −0.4364 0.9274
0.0276 −1.1740 0 −1.7405 1.1363
0.0334 0.4364 1.7405 0 3.3130
0.9247 −0.9274 −1.1363 −3.3130 0

⎤
⎥⎥⎥⎥⎦ .

Let W = Ma, according to Algorithm 1, it is calculated that
the condition (16) holds. Using the Software ”MATLAB”, we
can figure out

C =⎡
⎢⎢⎢⎢⎣

0.0120 −0.0089 −0.0030 −0.0031 −0.0020
−0.0089 0.0166 −0.0023 0.0123 −0.0085
−0.0030 −0.0023 −0.0671 −0.0427 −0.0986
−0.0031 0.0123 −0.0427 0.1155 −0.1535
−0.0020 −0.0085 −0.0986 −0.1535 −0.0116

⎤
⎥⎥⎥⎥⎦ ,

G =⎡
⎢⎢⎢⎢⎣

−0.0000 0.4770 −0.0264 −0.0343 −0.8310
−0.4770 0.0000 1.0664 −0.3868 0.8449
0.0264 −1.0664 −0.0000 −1.6632 1.1087
0.0343 0.3868 1.6632 −0.0000 3.1350
0.8310 −0.8449 −1.1087 −3.1350 0.0000

⎤
⎥⎥⎥⎥⎦ .

We define the residual as

res(λi, φi) = ‖(λ2
iMa + λi(D̂ + Ĝ) +Ka)φi‖,

and show the numerical results

(λi, φi) res(λi, φi)
(λ1, φ1) 1.3402e-014
(λ2, φ2) 1.3402e-014
(λ3, φ3) 8.4423e-015
(λ4, φ4) 8.4423e-015

III. CONCLUDING REMARKS

we have developed an efficient numerical method for the
finite-element model updating of damped gyroscopic system
based on incomplete complex modal measured data. Numer-
ical example shows that this method can serve as a fast and
reliable manner for updating the analytical model.
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