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A Renovated Cook’s Distance Based On The
Buckley-James Estimate In Censored Regression

Nazrina Aziz and Dong Q. Wang

Abstract—There have been various methods created based on
the regression ideas to resolve the problem of data set contain-
ing censored observations, i.e. the Buckley-James method, Miller’s
method, Cox method, and Koul-Susarla-Van Ryzin estimators. Even
though comparison studies show the Buckley-James method performs
better than some other methods, it is still rarely used by researchers
mainly because of the limited diagnostics analysis developed for the
Buckley-James method thus far. Therefore, a diagnostic tool for the
Buckley-James method is proposed in this paper. It is called the
renovated Cook’s Distance, (RD∗

i ) and has been developed based
on the Cook’s idea. The renovated Cook’s Distance (RD∗

i ) has
advantages (depending on the analyst demand) over (i) the change in
the fitted value for a single case, DFIT∗

i as it measures the influence
of case i on all n fitted values Ŷ ∗

i (not just the fitted value for case
i as DFIT∗

i ) (ii) the change in the estimate of the coefficient when
the ith case is deleted, DBETA∗

i since DBETA∗

i corresponds to the
number of variables p so it is usually easier to look at a diagnostic
measure such as RD∗

i since information from p variables can be
considered simultaneously. Finally, an example using Stanford Heart
Transplant data is provided to illustrate the proposed diagnostic tool.

Keywords—Buckley-James estimators, censored regression, cen-
sored data, diagnostic analysis, product-limit estimator, renovated
Cook’s Distance.

I. INTRODUCTION

There have been various methods created based on re-
gression ideas to resolve the problem of data set containing
censored observations, i.e. the Buckley-James method, Miller’s
method, Cox method and Koul-Susarla-Van Ryzin estimators.
Miller and Halpern [19] compared the performance of these
three methods and found that only the Buckley-James regres-
sion method produced reliable estimators for use with censored
observations.

In another study, [10] compared several methods of develop-
ing estimators in linear regression for a data set with censored
observations. The finding is in agreement with [19] whereby
the Buckley-James method was selected over the other meth-
ods. However, in 1992, they re-examined the Buckley-James
and the Cox (the proportional hazards model) methods. The
researchers found that the choice of a method relied on the
censoring proportion, the form of the failure distribution, the
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strength of the regression and the form of the censoring
distribution.

Later in 2000, [26] described three reasons to support
the Buckley-James regression method instead of the Cox
method: (i) Most researchers always failed to notice the basic
assumptions of Cox method, i.e. normally the assumption was
not fulfilled (it might be due to no alternative method in
the software resulting in the researcher omitting it); (ii) The
Buckley-James method could provide prediction directly from
estimators as opposed to the Cox method; (iii) The linear fits
resulted from the Buckley-James method are easier to explain
to the non-statisticians.

Other than doing comparisons for censored regression es-
timators that were developed from various methods as to
evaluate the performance of Buckley-James method, the diag-
nostic analysis for Buckley-James method has also attracted
a number of researchers as evident in the previous studies.
For example, [25] proposed renovated leverage value and
renovated scatterplot for censored regression. Later in the
year 1999, [24] suggested renovated added variable plot. And
finally, renovated partial residual plot, created by Wang, Smith
and Aziz [28].

Even though comparison studies show the Buckley-James
method performs better than some other methods (see, [10],
[19], [26]), it is infrequently used by researchers primarily
because of the limited diagnostics analysis developed for the
Buckley-James method thus far. Therefore, the current study
is designed to develop a diagnostic tool for the Buckley-James
method. The proposed diagnostic tool is called the renovated
Cook’s Distance, (RD∗

i ), which is developed based on the
Cook’s idea.

The Cook’s statistics [5] is the best summary of influence
due to its tendency to amplify the influence of a case.
Therefore, it is chosen to be modified in an attempt to produce
the quickest way in detecting the influential case in censored
regression, particularly in the Buckley-James method. The
renovated Cook’s Distance, RD∗

i has advantages (depending
on the analyst demand) over

1) DFIT∗

i = xT
i β̂∗ − xT

i β̂∗

(i) as it measures the influence
of case i on all n fitted values Ŷ ∗

i (not just the fitted
value for case i as DFIT∗

i )
2) DBETA∗

i = β̂∗ − β̂∗

(i) since DBETA∗

i corresponds to
the number of variables, p so it is usually easier to look
at a diagnostic measure such as RD∗

i since information
from p variables can be considered simultaneously.

DFIT∗

i measures effect of change in fit and DBETA∗

i

evaluates change in the estimated regression coefficients for
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censored regression if the ith row of Xn×(p+1) is deleted.
β̂∗ represents the coefficients estimated for censored re-

gression of all cases and ˆβ∗

(i) is the coefficients estimated for
censored regression when the ith row is deleted. The subscript
i in parentheses is read as “with case i is removed from
Xn×(p+1)”.

The paper is organized as follows: Section II provides a
general idea of the Buckley-James regression and estimation.
Section III describes previous diagnostics for Buckley-James
censored regression. Section IV explains the proposed diag-
nostic, renovated Cook’s Distance. Finally, Section V provides
illustrative examples before presenting the conclusion.

II. BUCKLEY-JAMES REGRESSION AND ESTIMATION

The Buckley-James regession method was proposed by
Buckley and James [3]. They modified standard linear regres-
sion equations, yi = α + βxi + εi, to make it flexible with
the data set that possesses censored observations. Let the ith
observation have a related censoring time, ti. Now observed
Zi, δi and xi for i = 1, 2, . . . , n where

Zi = min(yi, ti)

and

δi =

{
0 (censored) if yi ≥ ti,

1 (uncensored) if yi < ti.

Choose the survival time as ti; if the observation is censored,
δi = 0 whereas if the observation is uncensored, δi = 1, then
let the survival time be as yi. In this method, the old response
variable (survival time) needs to be renovated based on their
censored status, δi.

y∗

i
(b) =

{
bxi +

[
εi(b)δi + Êb(εi(b)|εi(b) > ci(b))(1 − δi)

]
if δi = 0,

yi if δi = 1.

The residual is represented by the different types of notation
which are ci and εi [22].

Let ci(b) = ti − bxi and εi(b) = yi − bxi and choose
ei(b) = Zi − bxi = min{ci(b), εi(b)}. Note that

Êb(εi(b)|εi(b) > ci(b)) =

∫
∞

ei
εdF̂b(ε)∫

∞

ei
dF̂b(ε)

=
n∑

k=1

wik(b)ek(b) (1)

and wik(b) are the weights developed from the probability
mass assigned by F to ek(b) and Kaplan-Meier estimator
F = 1 − S applied to the ek(b).

Now consider the multivariate censored regression,

Y = Xβ + ε, ε ∼ F

where

• Y is a n × 1 vector of response variable, which is right
censored;

• X is a known n × (p + 1) matrix as the first column of
1’s to provide an intercept;

• β is a (p+1)×1 vector of parameters where it is estimated
by bT = (b0, b1, . . . , bp);

• ε is n× 1 vector of errors and the distribution has an
unknown survival function, S = 1 − F.

First the renovated response variable needs to be obtained as
the linear censored regression. This can be done using the
following equation

Y∗(b) = Xb + Q(b)(Z − Xb). (2)

Next, the Buckley-James estimators can be developed as
follows

β̂ = (XTWX)−1XTWY∗ (3)

where W is the upper triangle Renovation Weight Matrix [22]
containing censored status on the main diagonal as below

W (b) = diag(δ) + {wik(b)}

=

⎛
⎜⎜⎜⎜⎜⎜⎝

δ1 w12(b) w13(b) . . . w1n(b)
0 δ2 w23(b) . . . w2n(b)
...

...
. . .

. . .
...

0 0 0
. . . w(n−1)n(b)

0 0 0 . . . δn

⎞
⎟⎟⎟⎟⎟⎟⎠

(4)

where

wik(b) =

⎧⎪⎨
⎪⎩

dF̂ (ek(b))δk(1 − δi)
Ŝ(ei(b))

if k > i,

0 if otherwise.

(5)

In fact, various efforts have been carried out as illustrated
in the previous studies to improve the Buckley-James method
(see, [15], [16], [18]).

In addition to Buckley-James estimators, previous studies
also mentioned the various diagnostic tools on censored re-
gression (see, [21], [24], [25], [28]). This is further described
in the following section.

III. DIAGNOSTIC ANALYSIS FOR BUCKLEY-JAMES

CENSORED REGRESSION

There are various techniques to examine a model and
discover the outlying and influential observations in regression
with a common data set (details can be found in [2], [4],
[6]). Thus, in censored regression, particularly the estimators
estimated using the Buckley-James method, a few diagnostic
tools can also be found.

A. Renovated Scatterplot

The new response variable (Y ∗), particularly for censored
observations can be obtained after finding the solution to the
Buckley-James estimator. Note that the response variable for
uncensored observations would remain the same. By using Y ∗,
now the scatterplot of X vs Y ∗ can be developed. This means,
the plot contains renovated points and uncensored points.

Next, [14] made an effort to develop residual plot similar
to the standard residual plot for standard regression. This
plot was developed by using modified residuals to examine
heteroscedacity and the violation of the other distributional
assumptions. The modified residual is given by

e∗i = δi(Yi − xT
i β̂) + (1 − δi)Di, (6)

where Di is randomly generated from the conditional distri-
bution estimated from the fitted model [9].
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B. Renovated Added Variable Plot

The added variable plots are the diagnostic tools that
permit evaluation of the role of individual variables within the
multiple regression model. They are used to visually assess
(i) whether a variable should be included in the model, (ii)
the presence of outliers and influential cases, and (iii) the
possibility of non-linear relationship between Y and individual
X in the model. An added variable plot is a way to look at
the marginal role of variable Xp in the model, given that other
independents are already in the model.

Smith and Peiris [24] proposed the renovated added variable
plot for censored regression. Assume the censored regression
model, Y ∗ = β0 + β1X1 + β2X2, the renovated added
variable plot for censored regression can be defined in terms
of residuals as the plot e∗(Y ∗|X1) against e∗(X2|X1), where
e∗(Y ∗|X1) is the renovated residual (Y regress on X1) and
e∗(X2|X1) is the renovated residual (X2 regress on X1).

It can be shown that the slope of the added variable plot of
e∗(Y ∗|X1) on e∗(X2|X1) is equal to the estimated coefficient
β2 of X2 in the censored regression model Y ∗ = β0+β1X1+
β2X2 (see, [24]).

C. Renovated Partial Residual Plot

Partial residual plots examine whether the linearity assump-
tion in a multiple regression model appears to be satisfied. Let
Y ∗ = β0 + β1X1 + β2X2 be the censored regression model,
[28] defined the renovated partial residual vector for X2 as
R∗

X2
= (I − H∗)Y ∗ + X2β2, where H∗ is the renovated hat

matrix. From the plot, if the point lies very close to the straight
lines, it suggests the X2 affects the Y ∗ strength linearity.
Wang, Smith and Aziz [28] also proved that the slope of the
renovated partial residual plot is equal to the β2 in Y ∗.

D. Renovated Hat Matrix

The hat matrix is used to identify the outlying observations.
In 1995, [25] proposed the renovated hat matrix, H∗ for
censored regression. H∗ is developed from Lemma 2.1 in [4].
The renovated hat matrix for censored regression is given by

H∗ = X(XT WX)−1XT W.

Next, the vector of renovate residual can be defined as
e∗ = Y ∗ − Ŷ ∗ = Y ∗ − H∗Y ∗, so that e∗ = (I − H∗)Y ∗.
The H∗ is not symmetric, however it fulfils (H∗)2 = H∗,
(I − H∗)2 = I − H∗, tr(H∗) = p and H∗(Y ∗ − Xβ) = 0.
It follows that the variance of the renovated residual estimate
is σ2(e∗) = σ2(I − H∗). Thus, the variance of an individual
renovated residual, e∗i , is σ2(e∗i ) = σ2(1 − h∗

ii) and h∗

ii can
be calculated without calculating the whole H∗,

h∗

ii = xT
i (XT WX)−1XT wi,

where wi is the n × 1 vector of the weights estimated in
(5). h∗

ii measures the leverage of an observation. The high-
leverage observation can be identified by comparing the h∗

ii

value with 2p/n. In censored regression, the h∗

ii is equal to
zero for δi = 0, i.e. censored observation. In case of δi = 1,
if the h∗

ii > 2p/n, then the observation could be flagged as
uncommonly large.

IV. RENOVATED COOK’S DISTANCE FOR BUCKLEY-JAMES

CENSORED REGRESSION

A case becomes influential if, when it is excluded from
the regression, causes a substantial change in the estimated
regression function. This can be measured by calculating
DFIT∗

i .
DFIT∗

i for Buckley-James model measures the influence of
case i on its own fitted value, Ŷ ∗

i . DFIT∗

i is given by Smith
[22] as

DFIT∗

i =
h∗

iiε
∗

i

(1 − h∗

ii)
(7)

where ε∗i = Y ∗

i − xT
i β̂∗ and h∗

ii = xT
i (XT WX)−1XT wi.

DFIT∗

i represents the number of estimated standard devia-
tions of Ŷ ∗

i where the fitted value Ŷ ∗

i increases or decreases
with the inclusion case i in regression.

As indicated earlier, this paper aims to propose the ren-
ovated Cook’s Distance, RD∗

i . It measures the influence of
case i on all n fitted values Ŷ ∗

i (not just the fitted values for
case i as DFIT ∗

i ). In a general version of Cook’s Distance
for least square regression (LSR), one can have

Di =
(Ŷ − Ŷ(i))T (Ŷ − Ŷ(i))

pσ2
(8)

where Ŷ(i) is the deleted fitted value when the ith point is
deleted. To produce a renovated Cook’s Distance for censored
regression, let the Buckley-James estimators be

β̂∗ = (XT WX)−1(XT WY ∗).

Therefore, the Buckley-James estimators without ith observa-
tion is given as,

β̂
∗

(i) = (XT
(i)W(i,i)X(i))

−1(XT
(i)W(i,i)Y

∗

(i))

= (XT

(i)W(i,i)X(i))
−1(XT

WY
∗

− xiw
T

i Y
∗)

=

{
(XT

WX)−1 +
(XT WX)−1XT wix

T
i (XT WX)−1

1 − xT
i

(XT WX)−1XT wi

}
{

X
T

WY
∗

− xiw
T
i Y

∗

}
=

{
(XT

WX)−1
X

T
WY

∗ +
(XT WX)−1XT wix

T
i (XT WX)−1XT WY ∗

1 − xT
i

(XT WX)−1XT wi

}

−

[{
(XT

WX)−1 +
(XT WX)−1XT wix

T
i (XT WX)−1

1 − xT
i

(XT WX)−1XT wi

}
X

T
wiy

∗

i

]

=

{
β̂
∗ +

(XT WX)−1XT wix
T
i β̂∗

1 − xT
i

(XT WX)−1XT wi

}
−

{
(XT WX)−1XT wiy

∗

i

1 − xT
i

(XT WX)−1XT wi

}
(9)

where X(i) and Y ∗

(i) denote the X matrix and the response
variable respectively when the ith row removed and

W(i,i) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

δ1 w12 w13 . . . w1(i−1) w1(i+1) . . . w1n

δ2 w23 . . . w2(i−1) w2(i+1) . . . w2n

. . .
. . .

.

.

.
.
.
.

.

.

.
.
.
.

. . .
. . .

δ(i−1) w(i−1)(i+1) . . . w(i−1)n
δ(i+1) . . . w(i+1)n

. . .
.
.
.

0 δn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

is the upper triangle Renovation Weight Matrix when ith row
and column are deleted from the matrix. Let

h∗

ii = xT
i (XT WX)−1XT wi
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be a renovated leverage for censored regression, hence replaces
h∗

ii in (9), so the Buckley-James estimators without ith obser-
vation can be defined as

β̂∗

(i) =

{
β̂∗ +

(XT WX)−1XT wix
T

i
β̂∗

1 − h∗

ii

}
−

{
(XT WX)−1XT wiy

∗

i

1 − h∗

ii

}

= β̂∗ +
{

(XT WX)−1XT wi

}{ (xT

i
β̂∗) − y∗

i

1 − h∗

ii

}

= β̂∗ −
{

(XT WX)−1XT wi

}{y∗

i
− ŷ∗

i

1 − h∗

ii

}

= β̂∗ −
{

(XT WX)−1XT wi

}{ ê∗
i

1 − h∗

ii

}
.

Now the renovated Cook’s Distance for censored regression
can be developed as

RD
∗

i =
(β̂∗

(i) − β̂∗)T S∗(β̂∗

(i) − β̂∗)

ps2

=
(ê∗

i )2

ps2

{
wT

i X(XT WX)−1XT wi

(1 − h∗

ii
)2

}

=
(ê∗

i )2

ps2

{
h∗∗

ii

(1 − h∗

ii
)2

}
,

where S∗ = XT WX , s2 is estimate variance and
h∗∗

ii = wT
i X(XT WX)−1XT wi and ê∗i = y∗

i − ŷ∗

i .

Theorem 1: The renovated leverage of an observation in
censored regression, h∗

ii, can be presented in the following
form, wT

i X(XT WX)−1XT wi, which is defined as h∗∗

ii .
Therefore, h∗∗

ii = h∗

ii.

Proof: Let the renovated leverage be

H∗ = X(XT WX)−1XT W

and X = (X1 X2) where X1 is an (n × r) matrix of rank
r and X2 is an n × (k − r) matrix of rank k − r. From [24],
one can find

H∗ = H∗

1 + (I − H∗

1 )(X2MXT
2 W )(I − H∗

1 )

where H∗

1 = X1(XT
1 WX1)−1XT

1 W and

M = [XT
2 W (I − H∗

1 )X2]−1.

By using Lemma 2.1 in [4], H∗∗ can be developed as below

H
∗∗ = WX(XT

WX)−1
X

T
W

=
(
WX1 : WX2

)(
XT

1 WX1 XT
1 WX2

XT
2 WX1 XT

2 WX2

)
−1 (

XT
1 W

XT
2 W

)

=
(
WX1 : WX2

)(
v11 v12
v21 M

)(
XT

1 W

XT
2 W

)
= WX1(XT

1 WX1)−1
X

T

1 W + (I − H
∗

1 )(X2MX
T

2 WW )(I − H
∗

1 )

= X1(X
T

1 WX1)
−1

X
T

1 WW + (I − H
∗

1 )(X2MX
T

2 WW )(I − H
∗

1 )

= X1(XT

1 WX1)−1
X

T

1 W
2 + (I − H

∗

1 )(X2MX
T

2 W
2)(I − H

∗

1 ),

where

v11 = (XT
1 WX1)−1+(XT

1 WX1)−1(XT
1 WX2)M(XT

2 WX1)(XT
1 WX1)−1;

v12 = −(XT
1 WX1)−1(XT

1 WX2)M ;
v21 = −M(XT

2 WX1)(XT
1 WX1)−1.

From the properties of the weight matrix, it is known
that W 2 = W , idempotence, see the proof in [23]. Hence,

H
∗∗ = X1(XT

1 WX1)−1
X

T

1 W
2 + (I − H

∗

1 )(X2MX
T

2 W
2)(I − H

∗

1 )

= X1(XT

1 WX1)−1
X

T

1 W + (I − H
∗

1 )(X2MX
T

2 W )(I − H
∗

1 )

= H
∗

1 + (I − H
∗

1 )(X2MX
T
2 W )(I − H

∗

1 )

= H
∗

since the renovated leverage, h∗

ii, comprises the diagonal
entries of H∗, therefore h∗∗

ii = h∗

ii.
Based on Theorem 1, Theorem 2 is given as follows:

Theorem 2: The renovated Cook’s Distance is given by

RD∗

i =
(ê∗i )

2

ps2

{
h∗

ii

(1 − h∗

ii)2

}
,

where h∗

ii = xT
i (XT WX)−1XT wi.

The formula shows that RD∗

i is large when either renovated
residual, e∗i , or the renovated leverage, h∗

ii, is large, or both. It
should be noted that due to censoring estimates of the residual
variance, s2 could easily inflate the RD∗

i . This problem is
solved by calculating s2 using the variance estimator proposed
by Smith [20]. Simulation studies by [12] and [13] showed that
Smith estimator performed the best. The variance estimator by
Smith [20] is given by

σ̂2
SMITH =

nu

nu − 2
g−2

[ n∑
i=1

(xi − x̄)2σ̃2
i

]
(10)

where nu is the number of uncensored observations, σ̃2
i and

g are defined by

σ̃2
i =

∫
ε2dF̂

β̂
(ε)−(1−δi)

[∫
∞

ei
ε2dF̂

β̂
(ε)∫

∞

ei
dF̂

β̂
(ε)

−

{∫
∞

ei
εdF̂

β̂
(ε)∫

∞

ei
dF̂

β̂
(ε)

}2]

where
∫

ε2dF̂
β̂
(ε) =

1
n

n∑
i=1

[
δi[ei(b)]2+(1−δi)

n∑
k=1

wik(b)[ek(b)]2
]

and

g =
n∑

i=1

(xi − x̄)2
[
1 − (1 − δi)p̂i(b)

]

where

p̂i(b) = 1 + λ̂(ei)

[
ei −

∫
∞

ei
εdF̂

β̂
(ε)∫

∞

ei
dF̂

β̂
(ε)

]

λ̂(ei) is estimated hazard function for ei and it is calculated
using the life table method as in [17]. Influence cases can
easily be detected by using the index plot {i, RD∗

i } where i
is the case number; particularly influential observations that
belong to the uncensored group.

Recall that the original Cook’s Distance will flag observa-
tions in standard regression from a normal data i.e. uncensored
data that is greater than 1 or 2 as influential (see, [27]).
The principle occurs due to the argument that the Cook’s
Distance does not have an F-distribution (see, [4]). As such,
the uncensored data using the renovated Cook’s Distance will
also be given extra attention if their RD∗

i value is greater than
1 or 2.

In censored regression, it is noted that the RD∗

i is equal to
zero for observation with δi = 0 i.e. censored observation.
This follows from h∗

ii, recall that h∗

ii = 0 for censored
observations. Even though the circumstances agree well with
Weissfeld and Schneider [29] as censored observations have
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a high tendency to be less influential than uncensored obser-
vations, one still has to be aware of the potency of censored
observations to influence the censored regression. Aziz and
Wang [1] discusses and presents a new diagnostic tool based
on local influence to overcome this issue.

V. RESULT

The Stanford Heart Transplant data set is a standard data
set for censored regression. It is taken from a Stanford Heart
Transplant program which began in October 1967. It has had a
number of versions since then. In this paper, the data is taken
from R library, but data on patients who were admitted to the
program but did not receive the transplant have been omitted.

Therefore, for regression and diagnostic analysis, 69 pa-
tients were used and of these 69 patients, 45 deceased and
hence were uncensored while 24 are still alive, and hence
were censored. The explanatory variables were age in years
and censored status. Since the data for the age was given in
days, it was divided by 365. A patient who died on the same
day during his/her transplant was given a survival time of one
day. The response variable was time survival; this variable has
been transformed to log base 10, as the linear model is often
appropriate when the response variable is measured on the
logarithm scale [3]. Details about this data set can be found
in [7].

The appendix shows a value of êi, hii, h
∗

ii, RD∗

i for each
observation. The values of hii and h∗

ii are in agreement with
Weissfeld and Schneider [25]. The h∗

ii value is equal to zero
for all patients with censored data (δi = 0). Next, the RD∗

i

value of each observation in Appendix A was scrutinized .
The youngest uncensored patients of 19.6 years (case 17),
did not give the largest value of RD∗

i even though this
observation showed the highest value of h∗

ii. Case 5, which
is the uncensored patient of age 29.2, gave the highest value
of RD∗

i . This patient had a higher residual value than the
youngest patient.

The plot of renovated leverage in Fig. 1 clearly represents
the youngest patient of 19.6 years and patient of the age 29.2
years as the two cases with the largest h∗

ii. Now refer to Fig.
2, which is the plot of the renovated Cook’s Distance. The
figure shows similar cases showing the two largest values of
RD∗

i , with the patient of age 29.2 years leading. Other patients
with RD∗

i value larger than 1 are from case 2, 3, 4 and 69
corresponding to patients aged 41.5, 54.1, 40.3 and 54.0 years.
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Fig. 1. Renovated leverage plot for Stanford Heart Transplant data where the
triangle represents uncensored observation and the circle represents censored
observation
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Fig. 2. Renovated Cook’s Distance plot for stanford heart transplant data
where the triangle represents uncensored observation and the circle represents
censored observation

VI. CONCLUSION

The result of the modified Cook’s statistics, without doubt,
clearly shows influence cases for the censored regression. Note
that the censored points cannot be influential cases as the
points have no renovated leverage (h∗

ii = 0), it follows that
RD∗

i is also equal to zero. This issue needs further inspection
due to the concern of the possibility of censored points to
become influential case in censored regression. In [1], a new
diagnostic tool will be proposed to solve this problem using
the local influence approach.

As opposed to censored points, uncensored points tend to
be more influential when the RD∗

i is used as a diagnostic
tool. However, it is noted that one cannot simply consider
the point with the highest leverage as the most influential
case. Recall e∗i = (1 − h∗

ii)y
∗

i , obviously, the larger h∗

ii, the
smaller e∗i and it follows that the value of RD∗

i will decrease.
From the result, the Stanford Heart Transplant data example
shows that the youngest patient with the highest leverage value
did not emerge as the most influential case in this data set.
The proposed diagnostics tool, RD∗

i can be considered as
the easiest way to detect the influential cases in censored
regression and produce a comparable result with Smith and
Peiris [24] and Weissfeld and Schneider [25].

APPENDIX A
DETAILS INFORMATION OF THE STANFORD HEART

TRANSPLANT DATA BASED ON AGE, êi, δi, hii, h
∗

ii, h
∗∗

ii , RD∗

i

Cases Age êi δi hii h∗

ii = h∗∗

ii RD∗

i

1 35.1 -2.620 0 0.027 0.000 0.000
2 41.5 -2.440 1 0.021 0.030 1.881
3 54.1 -2.086 1 0.019 0.029 1.334
4 40.3 -1.996 1 0.017 0.037 1.565
5 29.2 -1.706 1 0.015 0.155 6.239
6 28.6 -1.688 0 0.028 0.000 0.000
7 40.3 -1.327 1 0.026 0.038 0.718
8 55.3 -1.052 1 0.017 0.035 0.417
9 36.2 -0.945 1 0.036 0.071 0.722
10 54.3 -0.904 1 0.030 0.030 0.257
11 23.6 -0.901 0 0.016 0.000 0.000
12 45.0 -0.864 0 0.016 0.000 0.000
13 42.8 -0.812 1 0.043 0.027 0.184
14 42.5 -0.749 1 0.021 0.028 0.165
15 52.1 0.556 1 0.045 0.021 0.066
16 53.0 -0.719 1 0.027 0.024 0.128
17 19.6 -0.697 1 0.015 0.347 3.903
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continue

Cases Age êi δi hii h∗

ii = h∗∗

ii RD∗

i

18 56.9 -0.645 1 0.078 0.045 0.204
19 26.7 -0.083 0 0.016 0.000 0.000
20 53.8 -0.632 1 0.020 0.027 0.112
21 46.3 -0.606 1 0.016 0.017 0.064
22 47.1 -0.575 1 0.059 0.016 0.054
23 45.3 0.769 1 0.018 0.019 0.117
24 49.0 -0.497 1 0.018 0.015 0.039
25 50.6 -0.476 1 0.016 0.017 0.040
26 53.3 -0.427 1 0.015 0.025 0.047
27 52.5 -0.423 1 0.033 0.022 0.041
28 49.1 -0.413 1 0.016 0.015 0.027
29 51.3 -0.345 1 0.015 0.019 0.023
30 51.1 -0.337 1 0.031 0.018 0.021
31 54.6 -0.265 1 0.014 0.031 0.023
32 56.4 -0.222 1 0.016 0.041 0.022
33 61.5 -0.206 1 0.015 0.084 0.042
34 43.9 -0.166 1 0.022 0.024 0.007
35 48.0 -0.153 1 0.024 0.015 0.004
36 47.4 -0.107 1 0.015 0.016 0.002
37 26.7 -0.633 0 0.019 0.000 0.000
38 51.8 -0.017 1 0.016 0.020 0.000
39 64.5 -0.015 1 0.048 0.116 0.000
40 42.7 0.067 1 0.016 0.031 0.001
41 47.8 0.112 0 0.020 0.000 0.000
42 48.8 0.169 1 0.145 0.017 0.005
43 32.7 0.224 0 0.015 0.000 0.000
44 49.5 0.232 1 0.015 0.017 0.010
45 48.7 0.247 0 0.023 0.000 0.000
46 48.0 0.251 1 0.015 0.019 0.012
47 46.5 0.360 0 0.084 0.000 0.000
48 49.0 0.361 0 0.034 0.000 0.000
49 38.8 0.426 0 0.067 0.000 0.000
50 54.4 0.453 0 0.021 0.000 0.000
51 36.7 0.469 0 0.016 0.000 0.000
52 41.4 0.481 0 0.026 0.000 0.000
53 47.4 0.496 0 0.015 0.000 0.000
54 48.8 0.507 1 0.023 0.027 0.071
55 52.9 0.523 0 0.024 0.000 0.000
56 52.1 -0.727 0 0.017 0.000 0.000
57 48.0 0.562 0 0.016 0.000 0.000
58 33.2 0.576 0 0.015 0.000 0.000
59 44.9 0.578 1 0.027 0.048 0.175
60 50.9 0.620 1 0.019 0.035 0.144
61 43.4 0.624 1 0.021 0.056 0.241
62 45.9 0.637 1 0.015 0.044 0.193
63 40.6 0.725 0 0.015 0.000 0.000
64 48.6 0.757 1 0.015 0.043 0.269
65 45.3 -0.520 0 0.021 0.000 0.000
66 48.5 0.893 0 0.084 0.000 0.000
67 58.4 0.899 1 0.109 0.072 0.671
68 48.9 0.955 0 0.071 0.000 0.000
69 54.0 1.042 1 0.037 0.117 1.607
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