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Abstract—This paper presents an indirect adaptive stabilization 

scheme for first-order continuous-time systems under saturated input 
which is described by a sigmoidal function. The singularities are 
avoided through a modification scheme for the estimated plant 
parameter vector so that its associated Sylvester matrix is guaranteed 
to be non-singular and then the estimated plant model is controllable. 
The modification mechanism involves the use of a hysteresis 
switching function. An alternative hybrid scheme, whose estimated 
parameters are updated at sampling instants is also given to solve  a 
similar adaptive stabilization problem.  Such a scheme also uses 
hysteresis switching for modification of the parameter estimates so as 
to ensure the controllability of the estimated plant model.  

 
Keywords—Hybrid dynamic systems, discrete systems, saturated 

input, control, stabilization. 

I. INTRODUCTION 
HE inputs to physical systems usually present saturation 
phenomena which limit the amplitudes which excite the 

linear dynamics, [1-2]. Also, the adaptive stabilization and 
control of linear continuous and discrete systems has been 
successfully investigated in the last years. Classically, the 
plant is assumed to be inversely stable and its relative degree 
and its high-frequency gain sign are assumed to be known 
together with an absolute upper-bound for that gain in the 
discrete case. Attempts of relaxing such assumptions have 
been made for continuous systems, [5-7]. The assumption on 
the knowledge of the order can be relaxed by assuming a 
known nominal order  and considering the exceeding modes 
and unmodelled dynamics, [13-16], [19]. The assumption on 
the knowledge of the high frequency gain has been removed 
in [6] and [17] and the assumption of the plant being inversely 
stable has been successfully removed in the discrete case and 
more recently in the continuous one, [ 10-16]. The problem  
has been solved by using either  excitation of the plant signals  
or by exploiting the properties of the standard least-squares 
covariance matrix combined with  an estimation modification 
rule based upon  the use of  a hysteresis switching function, 
[12-16], [18].   
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Such an estimates modification technique guarantees that 

the modified estimated plant model is controllable at all time 
provided that the plant is controllable.  This  paper presents  
an  adaptive  stabilization  algorithm  for first - order  
continuous - time  systems  with  a  zero  which   can  be  
either  stable  or unstable  under  saturated input. The 
saturating  device is  modelled  by  a  sigmoidal   function .  
Such an approach is a very good approximation to the 
common saturations usually modelled as piecewise- 
continuous functions. Also, it is an exact model for saturations 
inherent to practical MOS-type amplifiers. The adaptive 
scheme uses a parameter  modification rule which guarantees 
that the absolute value of the determinant  of the Sylvester 
matrix  associated with the  modified  parameter  estimates is 
bounded from below  by a positive threshold and, thus, the 
estimated model is guaranteed to be controllable. That feature 
is the main contribution of this manuscript. The results are 
then extended to the case when an adaptive stabilizer, which 
re-updates at sampling instants the plant estimates, modified 
estimates and controller parameters, is used for the above 
continuous - time plant. This strategy results in a hybrid 
closed-loop system because of the discrete nature of the  
updating procedure of the parametrical estimation / 
modification.  

II. ADAPTIVE STABILIZATION 
A.   Plant, Estimation / Modification Scheme and Adaptive 

Stabilization Law 
Consider the following continuous-time first-order  

controllable system under saturated input: 
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where the saturated input u ' to the plant (1.a) is modelled by a 
sigmoidal function (1.b), [2]. To simplify the writing, the 
argument (t) is omitted and all the constants are denoted by 
superscripts by  ' * '.  Eqn. 1.a can be rewritten as  
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    Note that the equivalence between (1.a) and (2) is an 
identity where positive and negative terms concerned with the 
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unsaturated input and its time-derivative are cancelled in the 
right- hand-side of (2). Define filtered signals 
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for some scalar d * > 0  so that one gets  from (2) for filtered 
signals 
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where ε 0
*  = y f (0 ) − u f

' ( 0 )  has been included  in θ *
T

to 
obtain (4) without neglecting the exponentially decaying term 
due to initial  conditions of the filters  1/ ( s + d * ) used in (4) 
as proposed in [13], [15] and[16]. Also, the over-
parametrization of (5.a)-(5.b),  in the sense that the 
coefficients of the numerator polynomial are estimated twice 
with different regressors,  allows  describing (4.a) as driven by  
u f  and u f

'  - u f .  This idea will be then exploited for the 
stability analysis of the adaptive stabilizer. The parameter 

vector θ *
T

can now be estimated by using the least-squares 
algorithm 

ϕθ−= T
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where e is the prediction error ,  θ = (  θ 1  ,  θ 2 ,  θ 3 ,  θ 4 ,   
θ 5 ,  θ 6 ) T  is the estimate of  θ * , defined in (5.a),  and P is 
the covariance matrix . The use of (4.b) into (6) yields 
 

ee)uu()uu(yuuy t*d
6f

'
f5f

'
f4f3f2f1f +θ+−θ+−θ+θ−θ+θ= −&&&&   

                                                                                               (9) 
The following modification rule of the parameter estimates 

is used to guarantee the controllability of the estimated plant 
model 
 

β+θ=θ P                                                                               (10) 
 
with  β  being a vector which can be chosen to be equal to one 
of the following vectors: 

{
T

6

1 ]0,,0,0[ LL=β    ;     β 2 = v      ;            β 3 = - β 2  
                                                                                          (11.a) 
β 4 =  p 1 - p 4 + p 3   ;    β 5 = - β 4   ;     β 6 =p 1- p 4 - p 3  

                                                                                          (11.b)  
β 7 =- (p 1- p 4 ) + p 3 ;    v = (θ1 - θ 4 ) p 3 + θ 3 ( p 1- p 4) –  

 (p 2 - p 5 )                                                                        (11.c) 

 
and whose current value is selected from a hysteresis 
switching function which is defined by the following rule.  
Define   
 
c ( β ) = (θ 1 − θ 4 )θ 3 −(θ 2 − θ 5 )   
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which is the absolute value of the Sylvester matrix of the 
modified  parameter estimates associated with the estimation 
of the plant numerator and denominator polynomials  obtained 
from (8)-(9) and (10)-(12) . Assume that  β ( t − ) = β i ( t − )  
and c(β j ( t +))≥ c(β m ( t +)) for some j = 1 , 2 , ..., 7 with 
j  ≠  i  and all  m = 1 , 2 , ... , 7. Thus, for some  prefixed  
design  scalar  α *  ∈ ( 0, 1] : 
 

β( t +)=
β j ( t + ) if c(β j ( t + ))≥(1+α * ) c (β i ( t + ))

β i ( t + ) otherwise

⎧ 
⎨ 
⎩ 

                                                                                 (12) 
       
where p i  denotes the i-th column of P.  This modification 
strategy,  first proposed in [13] for the linear  continuous-time 
case and then  extended in [15-16] to  linear hybrid systems , 
guarantees that  the parametrical error lies in the image of the 
of P (see [13] ), while allowing that the diophantine equation , 
which will be then used for the synthesis of the adaptive 
stabilizer,  will have no  cancellations at any time.  It will be 
then shown that  the two following conditions are satisfied: 
 
C1)  β  converges 
C2)  c ( β ) ≥  δ * > 0.  
 
which will be then  required in the proofs of convergence and  
stability. Eqn. 9 can be rewritten as dependent of the modified 
estimates (10)-(12) as follows: 
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The filtered control input u f  to the saturating device and  

its unfiltered version  u are generated as  follows:  
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with the parameters  r 0 and s 1  of the adaptive stabilizer 
being calculated  for all time from the diophantine polynomial  
equation  
 
(D+θ 3 )(D+s1 )+[(θ 1−θ 4 )D+(θ 2 −θ 5 )] r 0 =C*(D) 
=

def
 D 2 + c 1

* D+ c 2
*                                                           (15)             

 
with D = d / dt in (15.a) and C * ( D ) being a strictly Hurwitz 
polynomial that defines the suited  nominal closed-loop 
dynamics.  
                                                                                                   

B.  Stability and Convergence Results 
They are summarized in the following main result: 

 

Theorem 1. Consider the plant (1) subject to the estimation 
scheme (6) -(8), the modification scheme (10)-(12) and the 
control law (14)-(15). Assume that either  a * ≥ 0 ( i. e. , the 

open- loop plant is stable)  or  y(0) ≤
b 1

* − a * b 0
*

a *   if  

a * < 0 ( i. e. , the initial condition is sufficiently small if the 
plant is unstable).                                                                
       
     Thus, the resulting closed-loop scheme has the following 
properties: 
 
(i)   The modified estimated plant model is controllable for all 
time for the chosen β  in such a way that  c ( β ) ≥ δ * > 0 . 
(ii)  ˜ θ = θ − θ * ∈ L ∞ and  e  and P ϕ  are  in L ∞ ∩  L 2 . 
(iii) θ , P,  β, θ , s 1 and r 0  are uniformly bounded and 
converge  asymptotically to finite limits. Also,  the number of 
switches in β is finite. Also,  ∞∩∈θ LL 2

& . 
(iv) The signals u , u '  and y  and their corresponding filtered 
signals are in L ∞ ∩ L2. The signals  u , u ', u f  ,  u f

'  , y and 
y f  converge to zero and their time-derivatives  are in L ∞ ∩ 
L 2 so that they converge to zero asymptotically.                                                                                                                                               
   

An outline proof of Theorem 1 is given in Appendix A. 
Note that the requirement of the initial conditions being 
sufficiently small  when the plant is unstable is a usual 
requirement for stabilization in the presence of input 
saturation since it is impossible to globally stabilize an open-
loop unstable system with saturated input. This avoids the 
closed- loop system trajectory to explode. Such a phenomenon 
occurs when the initial time- derivative of the state vector is 
positive and continues to be positive for all time because its 
sign cannot be modified for any input value within the 
allowable  input range. Note also  that  Theorem 1 (i) -(iii)  
imply that Conditions C1-C2  for the β (.) - functions of the 
modification scheme are fulfilled. Finally, note that the 
controllability of the modified estimation scheme allows  to 
keep coprime the modified estimates of the polynomials for 

zeros and poles. Thus, the diophantine equation (15) 
associated with the controller synthesis is solvable for all time 
without any singularities. 

The mechanism which is used to ensure local stability for 
unstable plants and global one for stable ones is to guarantee 
the boundedness of all the unsaturated filtered and unfiltered 
signals from the regressor bondedness while the saturated 
ones are bounded by construction. This also ensures the 
identification (or adaptation) error to be bounded for all 
sampling time since the unmodified and modified plant 
parameter estimates as well as those of the adaptive controller 
are all bounded. The fact that the control signal is bounded is 
ensured since it is saturated. In the unsaturated control case, 
the control boundedness  has to be proven explicitly (see, for 
instance,  [21-24]) irrespective of the particular theoretical 
design or application. On the other hand, it turns out the main 
future interest of appliying saturating controls to otherwise 
positive systems  in the presence of delays or under hybrid 
controls (see, [25-27]). Related research would be an 
interesting  future investigation field. 

III. ADAPTIVE ESTIMATES AND CONTROL 
Now, the continuous-time plant (1) is subject to the control 

law (14)-(15) under the saturating sigmoidal function  (1.b) 
but the estimation algorithm (6)-(8) only updates parameters 
at the sampling instants  h   1)k ( h     t  t k1k +=+=+  of 
the sampling  period h while the regressor is evaluated at all 
time for re-updating the various estimates at sampling instants 
only. The estimation modification and calculation of the 
controller parameters is also updated at sampling instants. The 
discrete-time parameter estimation and inverse of the 
covariance matrix adaptation laws are: 
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with  P (0)=P T (0) > 0 and ˜ θ k = θ k − θ *  for all integer k ≥ 
0 .The main result of this section is announced as follows: 
 
Theorem 2. Consider the plant (1) subject to the estimation 
scheme (6) and (16), i.e., the parameter estimates are only 
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updated at sampling instants, the modification scheme (10)-
(12), with (12) being updated only at  t =k h, and the 
stabilizing control law (14)-(15). Thus, the resulting closed-
loop scheme fulfils the same properties of Theorem 1 under 
the same assumptions.                                                               
    The proof of Theorem 2 is outlined in Appendix B.                                       

IV. CONCLUSION 
This paper has developed a continuous-time adaptive 

stabilizer for a continuous-time  first-order controllable plants 
which can  have an unstable zero and is subject to an input 
saturation of sigmoidal function type.  The mechanism used to 
guarantee the scheme' s closed-loop stability is a modification 
scheme of the parameter estimates  which is  based on the use 
of a hysteresis switching function.  The switches are built so 
that the modified plant estimated model  is controllable and 
then it has no pole-zero cancellation.  An alternative adaptive 
stabilizer which only modifies the parameter estimates at 
sampling instants, but which is based on  continuous-time 
input / output measurements,  is also addressed for the same 
kind of simple plant. The resulting closed-loop system is of a 
hybrid nature because of the discrete updating of the 
estimation scheme. A similar hysteresis switching function, 
which operates at sampling instants, is also used in that case 
so as to guarantee the controllability of the modified estimated 
plant model. 
 

APPENDIX 
A.  Outline of proof of Theorem 1 
Define the Lyapunov function candidate 

θθ= − ~P~2/1V 1T  by using the parametrical error 
*~

θ−θ=θ and the inverse of the covariance matrix. It follows 

that θ− ~P 1  is constant for all time so that β+θ=θ P* .Thus, 

( ) 1
**

0 fc0 =β≤δ<  

     ( ) ⎟
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2131 ,1maxpppvff  
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25
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It follows directly that 
 
c ( β ) = (θ 1 − θ 4 )θ 3 −(θ 2 − θ 5 )   

          ( )( ) 0pppvf 3
T

41
T >β−+β+=  

since 1ff + , v , 3p  and 41 pp −  cannot be simultaneously 

zero since ( ) 0c * >β . 0ff 1 ≠−=  if 0ff 1 =+ so that 
( ) 0c >β .  If 0v ≠±=β  then ( ) 0c >β . If 0vf == then β  

equalizes one of the combinations ( ) 341 ppp ±−±  and 

( ) 0c >β . Property (i) has been proven.  Property (ii) is 

proven as follows.  First note that 0eV2 2 ≤−=&  what 
implies that ( ) ∞<≤ 0VV . Then, e(t) is bounded  and 
square-integrable and the parametrical error is also bounded 
for al time. Finally, ( ) 0Pdt/Ptrd 2T ≤ϕϕ−=  what implies 
that ϕP  is bounded and square-integrable. Properties (iii)-(iv)  
follow from the fact that P is non-increasing and positive 
semidefinite from its updating rule so that it converges. Also,  
 

( ) ( ) ( ) ( ) ( ) ( ) τττϕτ=ττθ≤θ−θ ∫∫ dePd0t t
0

t
0
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( ) ( ) ( )( ) ∞<ττ+τϕτ≤ ∫ deP
2
1 t

0
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for all time. It follows that the parametrical error converges 
asymptotically to a finite limit. From this partly result, the 
remaining of the proof follows by calculating a bounded 
upper-bound of the norm-square integral of the time derivative 
of  the estimate time-.derivative. It follows that θ&  is bounded 
and square-integrable. Then , using the Diophantine equation 
for the controller synthesis, it follows that the  modified 
estimated vector θ  also converges asymptotically  as well as 
they converge the various controller parameters.                 
 

B. Outline of Proof of Theorem 2 
One gets from (16) that  1k

1
kk1k

~P~P~
−

−
− θΔ−=θΔ  with 

the one-step incremental error being: 
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    Then, for a Lyapunov sequence candidate 

k
1

k
T
kk

~P~~V θθ= − , one gets a one-step increment from 816): 
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              ( ) 0~P~PP~PIP~~
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kk
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kk

1
k

T
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if 0kk cc ≥ . Then, the  candidate is a Lyapunov sequence 
with bounded eigenvalues of the covariance matrix  implying 
strictly positive eigenvalues of its inverse, what leads to the 
results of Theorem 2.                                                      
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