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Abstract—In this paper, the process of obtaining Q and R 

matrices for optimal pitch aircraft control system has been described. 
Since the innovation of optimal control method, the determination of 
Q and R matrices for such system has not been fully specified. The 
value of Q and R for optimal pitch aircraft control application, have 
been simulated and calculated. The suitable results for Q and R have 
been observed through the performance index (PI). If the PI is small 
“enough”, we would say the Q & R values are suitable for that 
certain type of optimal control system. Moreover, for the same value 
of PI, we could have different Q and R sets. Due to the rule-free 
determination of Q and R matrices, a specific method is brought to 
find out the rough value of Q and R referring to rather small value of 
PI. 
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I. INTRODUCTION 
 and R matrices are two weighting factors which 
influence the performance index (PI) in optimal control. 
In order to minimise the PI, Q and R should be adjust to 

some values. That means: there are no certain values of Q and 
R for minimised PI. A tuning method for getting a relatively 
small value of PI is applied in this paper.  In order to do so, 
we should have a basic understanding of the system we are 
dealing with. When we are constructing a State-Space model 
for a system, we know that the element of state vector is 
related to the element of weighting vector. Furthermore, this 
requires in-depth understanding of the system rather than 
experimental examination of each element on Q and R 
matrices.  

II. PLANE MODEL OF THE PITCH MOTION 

A.Model 
A simplified model of the pitch airplane control is given in 

Fig. 1.  
If the elevator deflection angle has a small change over a 

short period, the input can be considered as a step input. 
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Fig. 1 Model of the pitching plane 

 

B.Assumptions 
The State-Space model is based on the following 

assumptions.  
To begin with, the atmosphere condition is symmetric and 

the propulsive forces T are constant Also, there is not 
suddenly strong wind effecting. Secondly, the plane is 
pitching at a constant velocity initially. Finally, the airplane is 
in steady flight condition with extremely small deviations. 
Therefore, all the changes in moments, inertia, velocity, 
angular velocity, elevator deflection angle, pitching angle, and 
rolling angle are assumed to be very small, so that there is not 
going to has huge influence in the overall motion. 

C.Mathematical Description 
The simulation of such a controller is based on a State-

Space model. In order to obtain this model, we have to 
analyse the mechanical factors of motions of an airplane with 
the assumptions. Logically, the pitching motion consists of a 
horizontal motion along the x-axis, a vertical motion along the 
z-axis, and a rotational motion around y-axis. The resultant 
force is usually made up by aerodynamic force X, Z, 
propulsive force T, and gravitational force G.  

Fig. 2 shows the horizontal motion along x-axis with forces 
components. 

 
Fig. 2 Horizontal motion along x-axis 
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We rearrange a set of partial differential equations, as (1) 
shows, which are developed from the basic principles in [2].  

 
       (1) 

 
These equations include the aerodynamic forces in x-

direction, as shown in Fig. 2. The final vision of expression 
for the resultant force along the x-axis is (2). 
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Fig. 3 shows the vertical motion along z-axis with forces 

components. 

 
Fig. 3 Vertical motion along z-axis 

 
Through the analysis of force acting on z-axis, we get 

equation (3). 
 

  (3) 
 
The final version of expression for the resultant force along 

the z-axis is represented as (4). 
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Taking angular velocities, the moment of inertia along x, y 
and z-axis, and the product of inertia into account, we produce 
the equation regarding to moment about y-axis as (5). 

 
      (5) 

 
Equation (6) is the final expression for the resultant 

moment about y-axis. 
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Finally, the relationship of the pitch angle and pitch rate is 

defined with a simple differential equation, which is (7). 
 

qΔ=Δθ&                    (7)   
 

As in [4], if all (2), (4), (6), and (7) are combined together 
in the compact form of matrix expression we can obtain the 
State-Space model of the plane, (8). 
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In [1] and [6], State-Space model of pitching motion, under 

certain prototype of Boeing 747 with 637000ib in weight at 
nominal speed U0=830ft/sec and 20000ft in height, gives us 
(9). 
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In order to obtain the pitch angle as the output y, we have 
(10). 
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III. DISCRETE TIME PITCH CONTROL MODEL 

A. Discrete time State-Space model 
 We have obtained the continuous time State-Space model 

as (9) and (10). Since the controller is based on a discrete time 
model, we have to convert it to the form in (11), where x(k) 
represents the state variables: u(k), w(k), q(k), and θ(k). 
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We did the conversion by using Matlab with a sampling 
time of 0.1 sec. The results are: 
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B. Input-Elevator Deflection Angle 
If the movement of elevator deflection angle is too big and 

fast, it could cause damage on the mechanical gears. Thus, the 
elevator deflection angle is assumed to be changed at rather 
small steps. The more realistic input will be sum of a ramp 
and step functions. We can activate either input by using a 
single switch in Simulink, as illustrated in Fig. 4. 

 

 
Fig. 4 Simulated input model in Simulink 

 

C. Performance Index (PI) and Optimal Pitch Controller  
PI can be generally understood as the difference between 

actual system performance and desired system performance, 
which can be represented by the expression (12).  
 

              (12) 
 
If we define V as the function of system performance during 
one time interval k, combining (12), we get the derivative of 
PI shown in (13). 
 

(13) 
  

‘ ’ indicates the desired value. 
 

After we expand (13) and rearrange it, we obtain (14). 
 

      (14) 
 
A minimum point or a maximum point exists where the 

derivative of that point equals to zero. It is considered there        
is no maximum point in performance index. When the 
derivative of PI equals zero, the first and second parts of (14) 
have to satisfy the condition as shown in (15) and (16). 

 
 

 (15) 
 

   (16) 
 
As an outcome, the above expressions are the basic 

conditions for existence of a minimum performance index. 
 
In order to find the optimal pitch controller parameters, we 

define a performance index (PI), in the form from [5]. 
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To minimize this performance index (17), we apply the 

Euler-Lagrange equation (15).  
 
Now, let us consider L (a step before the final step) with 

Lagrange multiplier which is used for simplification. We are 
able to acquire (18)  

 

        (18) 
 

 
By combining the Hamiltonian Equation, which is defined 

as (19), with derivative of (18), the conditions for the 
minimum are developed and expressed with the following set 
of equations: 

 

    (19) 

 
 
After performing substitution and differentiation, and let 

, Riccati matrix P is solved.  
 

[ ] QGkPHHRIkPGkP ++′++′=
−− 11 )1()1()(      (20) 
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Equation (20) involves two matrix inversions. Technically, 
this is likely to slow down a system. Thus, we try to rearrange 
it to the form shown as (21), which only contains one matrix 
inversion. 
 

[ ]{ } QGkPHRHkPHHkPkPGkP ++′++′+−+′= − )1()1()1()1()( 1
 (21) 

 
A state feedback controller is simulated as in  Fig. 5.  
The ending point N will be set to 20 sec during the 
observation.  

 
)()( kKxku −=                        (22)  

where in (22), K is a state feedback matrix. 
 

 
 

 
Fig. 5 Simulated model in Simulink 

 
Through the mathematical manipulation of (17), (21), and 

(22), we can obtain (23), which is known in [3] and [7] as a 
Kalman gain. 
 

[ ] )1()()1()1()1()()1( 1 −′−−+−′−= − kGkPkHkRkHkPkHK  (23) 
 

Note that state feedback gain applying in this discrete time 
optimal pitch controller, in (22) is actually one step after the 
Kalman gain. However, it does not have negative impact on 
this system because the terms making up this gain do not 
contain time varying terms. As we can see, matrices H, R, and 
G are all constant matrices. No matter what step we take, these 
matrices will not change in respect to time. As a result, the 
Kalman gain is able to be applied on this pitch controller, 
although it is one step forward to the original one. 

 
When (23) is applied as a state feedback, the gains are not 
constant at the beginning. They are shown as a dynamic 
feedback gain in Fig. 6. 
After a short period, the gains converge to constant. This is 
known as steady state feedback gain. 
 

 If these gains in steady state are directly connected to the 
feedback, the response of theta is shown in Fig. 6. 

 
 

 

 
Fig. 6 Response of steady state feedback gain dynamic feedback 

gains 
 

 
In [8], by comparing it to the response of theta with 

dynamic feedback gains, we can see that both response 
patterns of theta are very similar. Without much effect on 
output theta, steady state feedback gains also provide less 
oscillation.  

There is usually an advantage for a system to have less 
oscillation. In realistic, if the state feedback gain for a system 
is pre calculated, the overall system may response faster with 
assigning the steady state gain to it directly.  

IV. DETERMINATION OF Q AND R MATRIX 

A. Minimized value of PI 
To begin with, we should keep the properties of Q and R 

matrices in mind. Q should strictly obey to the rule. It is that Q 
matrix has to be nxn symmetric, positive definite or positive 
semi-definite. R should be positive definite due to that it 
weights the input.  

Simulation is done by using Simulink. The observation 
period is set to be 20 sec during the simulation. Thus, there is 
a final Riccati value for P at time N. Taking Riccati matrix P 
into account, a simulation block which returns dynamic gain K 
and Riccati Matrix P is designed as Fig. 7.  
Simulation to calculate the value of PI is done, using a block 
diagram shown in Fig. 8.  
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Fig. 7 Simulation of state feedback 
  

 
Fig. 8 PI calculation 

 

B. Determination of Q 
Firstly, we tune the main diagonal of this matrix. After 

setting it to be an ‘eye’ matrix, we run the simulation and see 
the response of the output. Due to the reason that the velocity 
components along x and z axis have less effect on the pitching 
motion, the pitch rate and the pitch angle become the major 
concern. Increase in the weighting factor of pitch angle, sitting 
on the 4th row and 4th column of Q matrix, raises the 

difference between desired pitch angle and simulated pitch 
angle at the final time. Thus, it should be only adjusted at the 
range of 0.5 to 2. Furthermore, pitch rate is the dominant 
factor that eliminates the overshot of pitch angle. If we 
increase the weighting factor for pitch rate, the overshot of 
pitch is reduced significantly. 

It comes to the next step after we tune the weighting factor 
Q on its main diagonal. Mathematically, there is a solid 
relationship between the pitch angle and pitch rate. The output 
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curve will be smooth if the pitch rate and the pitch angle are 
stressed among the state variables of velocity components 
along x and z axis. As an outcome, increase in the weight 
factor related to the velocity component along z axis makes 
contribution to the achievement of better output. Nevertheless, 
the output theta will start fluctuating, if the velocity 
component on x axis and pitch rate is over-stressed. 

Overall, the weighting factors are dependent on the 
importance of that corresponding state variable. Beside the 
main diagonal of matrix Q, zero elements indicate there is 
little influence on pitch angle. The more important the state 
variable, the greater the value of weighting factor is. 
 

  
 

Associated with the techniques above, we can experimental 
test each vital element in (24) with symbol “cross”, to observe 
the change in value of PI. Full data is shown in Appendix A.  

The summary of change in PI referring to such properties, 
such as overshot, is presented in TABLE I. 

 
 

TABLE I 
SUMMARY OF CHANGES CAUSED BY INCREASE IN VALUES OF ELEMENTS IN Q 

MATRIX 

Element Position Output - 
Theta 

Settling 
Time Ts Overshot PI 

4, 4    
3, 3    
2, 2    
1, 1    
3, 4    

2, 4     
1, 4    
2, 3    

1, 3     
1, 2    

 - Almost no difference 
 - Increase 
 - Decrease 
 - Slightly Increase 
 - Slightly Decrease 

 
 

C.Determination of R 
There is only one dimension for R matrix. As we decrease 

the value of R, the final value of output is decreased 
significantly. TABLE II shows the trend of performance 
index, theta, overshot and settling time once R increases. The 
results of obtaining such data are presented in Appendix B. 

TABLE II 
SUMMARY OF CHANGES CAUSED BY INCREASE IN VALUE OF R 

Weighting 
Factor 

Output - 
Theta 

Settling       
Time Ts Overshot PI 

     R             
 

When R is set to be zero, the value of performance index 
becomes zero. It is reasonable because the reference input is 
ignored by the system. Although it satisfies our criterion for 
optimal pitch controller, we will not adopt this value due to 
the reason that reference input is necessary and it generally 
has a value of 1. 

D.Results 
These are the optimal values of Q and R matrices, with a PI 

value of 99.65. 
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The output Theta of controller respecting step input signal 
Delta is presented in Fig. 9. 

 

 
Fig. 9 Response to a unit step input 

 
Fig. 10 shows us the response corresponding to a realistic 

elevator deflection angle. 
 

 
Fig. 10 Response to a ramp plus step input 

 
In conclusion of the results: 

The output (Theta) is non-oscillatory, so there is no overshoot. 
From Fig. 9, the rising time and setting time is about 3.5 sec 
and 7 sec, respectively. 

(24)
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In terms of Fig. 10, the more realistic input has a response 
with settling time at 14 sec. There is a delay about 8 sec 
before Theta reaches the exact value of set point of Delta. 

V. APPLYING ‘dlqr’ COMMAND IN MATLAB 
This experiment is conducted to see if the simulation of 

optimal pitch control has the same results as ‘dlqr’ command 
does. If the results are very similar, the structure of simulation 
can be proved to be successfully constructed. 
The full name of  a built in Matlab command ‘dlqr’ is: 
Discrete Linear Quadratic Regulator. The default performance 
index (PI) for this command is expressed in (25), which 
involves cross term matrix M. As the original PI we defined in 
(17), M has to be set to zero when we conduct the ‘dlqr’ 
command. 

 
                (25) 

 
 

TABLE III indicates two pairs of values of K and P 
matrices. As a result, the great similarity appears between 
‘dlqr’ command and simulation using Simulink. 

 
TABLE III 

COMPARISON BETWEEN SIMULATION AND ‘DLQR’ COMMAND 

Matrix Q, R 

 

Simulation from 
Simulink 

K 

P 

‘dlqr’ Command 

K 

P 

 

VI. CONCLUSION 
This paper has demonstrated the optimal control method for 

the digital pitch aircraft controller. The method used to 
determine Q and R matrices is considered to be the core of this 
paper. Weighting factors Q and R in optimal control system 
can be determined by fully understanding the target model. By 
tuning the relative elements in those matrices, we are able to 
obtain the one of the best values of Q and R matrices, which 
corresponds to a minimised PI value. Design of such pitch 
controller is one of the examples where this approach can be 
applied. A procedure for this method is suggested.  A 
simulation of the optimal digital control for the aircraft has 
been performed. 

 
 

 APPENDIXES 

Appendix A.Experimental results for elements of Q matrix 
Element 
Position 

Value Theta Ts OS (%) PI 

4, 4 5 0.5 9 28 233.6 
 10 0.35 8 / 241.8 

3, 3 5 1.1 15 70 200.2 
 10 1.1 17 45 197 

2, 2 5 1.1 12 125 221.8 
 10 1.1 13 110 227 
 15 1.1 14 105 231.8 

1, 1 5 1.1 13 150 262.8 
 10 1.2 13 170 306.2 
 15 1.25 15 180 340.8 

3, 4 5 1.08 13 20 129.6 
 10 1.08 12 20 123.6 
 15 1.08 12 20 121.6 

2, 4 5 Instable 
 2 1.02 20 90 139.4 
 3 Instable 
 1.5 1.09 >20 83 149.1 

1, 4 5 1.08 18 220 1.42E6 
 10 1.08 15 160 1.81E8 
 1.5 1.08 13 90 167.9 

2, 3 5 1.1 9 67 149.2 
 10 1.1 10 48 137.4 

1, 3 5 Instable 
 2 1.1 >15 93 157.3 
 3 Strong Oscillation 
 0 1.1 <15 110 195.3 

1, 2 1 1.1 11 123 209.8 
 5 1.1 11 109 192.6 
 10 1.1 11 90 182.1 

‘4, 4’ means the position at 4th row and 4th column of Q matrix. N=20 sec. 

Appendix B.Experimental results for element of R matrix 

Element 
Position 

Value Theta Ts OS (%) PI 

1, 1 0.5 0,76 12 100 114.5 
 1.0 1.1 14 125 217.1 
 2.0 1.5 16 175 417.3 

‘1, 1’ means the position at 1st row and 1st column of R matrix. N=20 sec 
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