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The error analysis of an upwind difference
approximation for a singularly perturbed problem

Jiming Yang

Abstract—An upwind difference approximation is used for a sin-
gularly perturbed problem in material science. Based on the discrete
Green’s function theory, the error estimate in maximum norm is
achieved, which is first-order uniformly convergent with respect to the
perturbation parameter. The numerical experimental result is verified
the valid of the theoretical analysis.

Keywords—singularly perturbed, upwind difference, uniform con-
vergence.

I. INTRODUCTION

S INGULARLY perturbed problems have been used to
describe pattern formation in developmental material sci-

ence. We consider the following singularly perturbed problem

Lu (x) := −ε u′′(x) − p(x)u′(x) = f(x) (1)

for x ∈ (0, 1) with the boundary condition

u(0) = 0, u(1) = 0, (2)

where ε is a constant of diffusion satisfying 0 < ε ≤ 1. We
assume that f is sufficiently smooth. It is also assumed that
p ∈ C1[0, 1] and that there are constants β and β such that

0 < β ≤ p(x) ≤ β, and |p′(x)| ≤ β, ∀x ∈ [0, 1].

From [1], we know that the following result holds true for
the solution of the problem (1)-(2):∣∣∣u(k)(x)

∣∣∣ ≤ C
(
1 + ε−k e−β x/ε

)
, k = 0, 1, 2. (3)

Combining the estimate (3) with the equations (1)-(2), we will
get a similar estimate of the third derivative of the solution∣∣∣u′′′

(x)
∣∣∣ ≤ C

(
1 + ε−3 e−β x/ε

)
. (4)

The problem (1)-(2) has a steep layer of order O(ε) at the
left-hand boundary x = 0. It is very hard to approximate
efficiently by most numerical methods on an even grid. To
approximate the problem (1)-(2) reliably when ε � 1, we
construct a nonuniform mesh that concentrates nodes in the
boundary layer by equidistributing a monitor function ([2],
[3], [4], [5], [6], [7]) over the domain of the problem.

In [6] and [7], uniform convergence estimates of order
γ ∈ (0, 1) of the upwind difference scheme basing on a priori
estimates of the solution of problem are derived. In [2] a priori
estimates and discrete Green’s function are used to improve
the accuracy that writes max

0≤i≤N
|u(xi)−uN

i | ≤ CN−1lnN . In
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the present work, we analyze the error in the maximum norm
of the upwind difference scheme basing on a priori estimates
and the discrete Green’s function and improve the convergence
order to 1.

This paper is organized as follows. In section II, the discre-
tised difference scheme and the mesh are given. In section III,
we study the discrete Green’s function of the operator. Section
IV is for the error analysis. The numerical experiment is given
in section V. The last part is the conclusions.

Throughout the paper, C, sometimes subscripted, denotes
a generic positive constant that is independent of ε and any
mesh used.

II. AN UPWIND DIFFERENCE METHOD AND THE MESH

Let ω = {x0, x1, . . . , xN} be an arbitrary mesh, where
0 = x0 < x1 < . . . < xN = 1. The mesh sizes are
hi = xi − xi−1, i = 1, 2, · · · , N . Then an upwind difference
discretization of (1)-(2) is :

LN uN
i : = −εD+ D−uN

i − pi D+uN
i = fi, (5)

for 1 ≤ i ≤ N − 1 with

uN
0 = 0, uN

N = 0, (6)

where pi = p(xi), fi = f(xi), {uN
i } is the solution

computed on the mesh {xi} and

D+uN
i =

uN
i+1 − uN

i

hi+1
, D−uN

i =
uN

i − uN
i−1

hi
,

D+D−uN
i =

2
hi + hi+1

(D+uN
i − D−uN

i ).

The numerical mesh is constructed by equidistributing the
standard arc-length function

M(u(x), x) =
√

1 + [u′(x)]2

over the domain [0, 1]. This gives rise to a mapping x = x(ξ):

dx

dξ
=

L√
1 + [u′(x)]2

, ξ ∈ (0, 1),

where L is the total arc-length of u(x) over [0, 1]. That is to
say, mesh points are given by

xi =
∫ ξi

0

L√
1 + [u′(x)]2

dξ, ξi =
i

N
(7)

for 0 ≤ i ≤ N .
Thus, the solution of the difference equations (5)-(6) on the

mesh (7) produces the numerical approximation to (1)-(2).
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III. THE DISCRETE GREEN’S FUNCTION OF THE
DIFFERENCE OPERATOR

First, we introduce the following comparison principle.
Lemma 3.1: If LN vi ≤ LN wi, 1 ≤ i ≤ N − 1 and

v0 ≤ w0, vN ≤ wN , then vi ≤ wi, 0 ≤ i ≤ N .
Proof. The matrix associated with the discretised operator
LN is diagonally dominant and has non-positive off diagonal
terms. Hence the matrix is M -matrix, and it has a positive
inverse. Thus, vi ≤ wi, 0 ≤ i ≤ N .

Next, for j = 1, · · · , N − 1, we define the discrete Green’s
function G(xi, xj) with respect to the difference operator LN

( with the Dirichlet boundary condition ) associated with the
point xj by

LN G(xi, xj) =
δij

hi+1
, i = 1, · · · , N − 1,

G(0, xj) = G(1, xj) = 0,

where the Kronecker function δij is 1 if i = j and 0
otherwise. Then for each i, we have

uN
i =

N−1∑
j = 1

hj+1 G(xi, xj) fj .

The comparison principle of Lemma 3.1 with the test
function v = 0 and

w =
2
β

⎧⎨
⎩

1 if 0 ≤ i ≤ j ≤ N
i∏

k=j+1

(
1 + βhk

2ε

)−1

if 0 ≤ j < i ≤ N

yield the following property (see [8], [9] for more details) of
the discrete Green’s function:

0 ≤ G(xi, xj) ≤ 2/β, 1 ≤ i ≤ N, 1 ≤ j ≤ N − 1. (8)

IV. THE ERROR ANALYSIS

During the analysis, we need to introduce the local trun-
cation error. The local truncation error of (5) at the node xi

(i = 1, 2, · · · , N − 1) is defined as:

τi = LN uN
i − Lu(xi)

= −ε(D+D−ui − u′′(xi)) − pi(D+ui − u′(xi)).

It is easily shown that this reduces to

τi = − ε

hi + hi+1

{ 1
hi+1

∫ xi+1

xi

(s − xi+1)2 u
′′′

(s)ds

− 1
hi

∫ xi

xi−1

(s − xi−1)2 u
′′′

(s)ds
}

+
pi

hi+1

∫ xi+1

xi

(s − xi+1) u
′′
(s)ds,

from which we obtain the bound

|τi| ≤ ε

∫ xi+1

xi−1

|u′′′
(s)|ds + β

∫ xi+1

xi−1

|u′′
(s)|ds.

If we invoke the derivative bounds given in (4), the above
estimate may be simplified to

|τi| ≤ C

∫ xi+1

xi−1

|u′′
(s)|ds. (9)

We are now in a position to derive an error estimate as
follows.

Lemma 4.1:
N−1∑
i=0

hi+1 |τi| ≤ C max
i=0,1,···,N−1

∫ xi+1

xi

√
1 + [u′(x)]2dx. (10)

Proof. (i) max
i

hi+1 > ε: By (3), we have

N−1∑
i=0

hi+1 |τi| ≤
N−1∑
i=0

[
hi+1

ε

hi
|D+ui − D−ui|

+pi hi+1
|u(xi+1) − u(xi)|

hi+1

+ε hi+1 |u′′(xi)| + pi hi+1 |u′(xi)|
]

≤
N−1∑
i=0

[
2hi+1 max

xi−1≤x≤xi+1
|u′(x)|

+pi

(|u(xi+1)| + |u(xi)|
)

+ hi+1 |u′(xi)|
+pi hi+1 |u′(xi)|

]
≤ C max

i=0,1,···,N−1

∫ xi+1

xi

√
1 + [u′(x)]2dx.

(ii) max
i

hi+1 ≤ ε: From (9), we get

N−1∑
i=0

hi+1 |τi| ≤ C
N−1∑
i=0

hi+1

∫ xi+1

xi−1

|u′′
(x)|dx

≤ C
N−1∑
i=0

hi+1ε
−1

∫ xi+1

xi−1

|u′
(x)|dx

≤ C max
i=0,1,···,N−1

∫ xi+1

xi

√
1 + [u′(x)]2dx.

Combining all the above inequalities, the desired result is
achieved.

Let ei = u(xi)−uN
i denote the error function, where u(x)

is the solution of (1)-(2), and uN
i is the solution of (5)-(6) on

the mesh (7). Substituting uN
i = ei + u(xi) into (5)-(6), we

see that ei is the solution of the following problem

LN ei = −εD+ D−ui − pi D+ui − fi = τi (11)

for 1 ≤ i ≤ N − 1 with

e0 = 0, eN = 0. (12)

Note that the matrix in the discrete scheme is an M -matrix.
We may derive the following estimate.

Theorem 4.1:

|ei| ≤ 2
β

N−1∑
j = 0

hj+1 |τj |, 0 ≤ i ≤ N. (13)

Proof. By using the discrete Green’s function for (11)-(12)
and using (8), we have

|ei| =
∣∣ N−1∑

j = 0

hj+1 G(xi, xj)τj

∣∣ ≤ 2
β

N−1∑
j = 0

hj+1 |τj |

for 0 ≤ i ≤ N .
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Finally, we obtain the main result.
Theorem 4.2: Let u(x) be the solution of (1)-(2). Let uN

i

be the upwind difference approximation obtained by solving
(5)-(6) on the mesh (7). Then

max
0≤i≤N

|u(xi) − uN
i | ≤ C N−1.

Proof. From (3), we find that
∫ 1

0

√
1 + [u′(x)]2dx ≤ C. Note

that (7) indicates that for j = 1, 2, · · · , N − 1,∫ xj

xj−1

√
1 + [u′(x)]2dx =

∫ xj+1

xj

√
1 + [u′(x)]2dx.

By Theorem 4.1, Lemma 4.1, we know that for 0 ≤ i ≤ N ,

|u(xi) − uN
i | ≤ 2

β

N−1∑
j=0

hj+1|τj |

≤ C max
j=0,1,···,N−1

∫ xj+1

xj

√
1 + [u′(x)]2dx

≤ C N−1.

The desired result is obtained.
Remark: Theorem 4.2 indicates that the upwind difference

approximation is first-order uniformly convergent with respect
to the perturbation parameter ε.

V. A NUMERICAL EXPERIMENT

Consider the problem (1)-(2) with p(x) = 1
1+x and f(x) =

1
1+x . Its exact solution is u(x) = (1+x)1−

1
ε −1

21− 1
ε −1

−x. It is solved
using the upwind difference scheme (5)-(6) on the mesh (7).
The numerical results are listed in Table 1, where ‖e‖∞ =
max

i
|u(xi) − uN (xi)| is the error in the maximum norm for

a fixed N . The convergence rates r = log2(
ηN

η2N
) for ε =

10−5, 10−8, 10−11 are also presented, where ηN stands for
the error with a fixed ε and a fixed N . These convergence
rates approximate to 1 as N is increasing, which coincides
with Theorem 4.2.

TABLE I
THE ERRORS IN THE MAXIMUM NORM AND THE CONVERGENCE

RATES OF THE NUMERICAL APPROXIMATION

N ε = 10−5 ε = 10−8 ε = 10−11

32 ‖e‖∞ = 6.12e−2 ‖e‖∞ = 6.12e−2 ‖e‖∞ = 6.12e−2
64 ‖e‖∞ = 3.12e−2 ‖e‖∞ = 3.12e−2 ‖e‖∞ = 3.12e−2

r = 0.97 r = 0.97 r = 0.97
128 ‖e‖∞ = 1.57e−2 ‖e‖∞ = 1.57e−2 ‖e‖∞ = 1.57e−2

r = 0.99 r = 0.99 r = 0.99
256 ‖e‖∞ = 7.86e−3 ‖e‖∞ = 7.86e−3 ‖e‖∞ = 7.87e−2

r = 0.99 r = 0.99 r = 0.99
512 ‖e‖∞ = 3.94e−3 ‖e‖∞ = 3.94e−3 ‖e‖∞ = 3.94e−3

r = 1.00 r = 1.00 r = 1.00

VI. CONCLUSIONS

In this paper, we first presents an upwind difference scheme
with the equidistributing principle for a singularly perturbed
problem arise from pattern formation in developmental mate-
rial science, then obtain the uniformly convergent error esti-
mate basing on the discrete Green’s function. The numerical
experimental results coincide with the theoretical analysis.
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