
International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:3, No:2, 2009

283

Abstract—This paper presents a new hardware interface using a

microcontroller which processes audio music signals to standard
MIDI data. A technique for processing music signals by extracting
note parameters from music signals is described. An algorithm to
convert the voice samples for real-time processing without complex
calculations is proposed. A high frequency microcontroller as the
main processor is deployed to execute the outlined algorithm. The
MIDI data generated is transmitted using the EIA-232 protocol. The
analyses of data generated show the feasibility of using
microcontrollers for real-time MIDI generation hardware interface.

Keywords— Signal processing, MIDI, Microcontroller, EIA-232.

I. INTRODUCTION
EFORE the invention of digital based music notation
systems, paper-based musical notations and scores have

been used for communicating musical ideas and compositions.
Digital based music encoding an able simple editing,
processing, and communication of musical scores. Music data
are multi-dimensional; musical sounds are commonly
described by their pitch, duration, dynamics and timbre. Most
music database and data management systems use one or two
dimensions and these vary based on types of users and
queries.

There are many formats in which music data can be
digitally encoded. These formats are generally categorized
into a) highly structured formats such as Humdrum [1] where
every piece of musical information on a piece of musical score
is encoded, b) semi-structured formats such as MIDI in which
sound event information is encoded and c) highly unstructured
raw audio which encodes only the sound energy level over
time. Most current digital musical data management systems
adopt a particular format and therefore queries and indexing
techniques are based upon the dimensions of music
information that can be extracted or inferred from that
particular encoding method.

Systems such as voice to MIDI, whereby format conversion
and transcription of real-time audio signals to MIDI data
stream are required, are currently been research and developed
widely [2-4]. MIDI is a popular format in computer based

Farshad Arvin and Shyamala Doraisamy are with the University of Putra

Malaysia, Faculty of Computer Science and Information Technology;
Department of Multimedia ; 43400 UPM Serdang, Selangor, Malaysia (e-
mails: gs21875@ mutiara.upm.edu.my, shyamala@fsktm.upm.edu.my).

music production such as composition, transcription, and so
on. Size of MIDI files is very smaller than other music
formats, because MIDI data consists of text messages that are
defined instructions only and not sounds signal representation.
It is suitable data format to be utilized in software application
development. With Voice to MIDI system, we will be able to
generate MIDI data of analog input rather easily. This system
enables to convert a melody with a microphone to digital
scores like MIDI. It extracts acoustical characteristics such as
pitch, volume, and duration by intelligent algorithms and
converts them into a sequence of notes for producing music
scores. Thus, melodies will be translated into chromatic
pitches without human intervention [5].

Challenges faced commonly in voice to MIDI systems
include the clarity of input data for acquiring suitable results.
In some systems such as [6], we must sing music simply with
“ta ta ta …” expressively singing to prevent many inaccurate
outputs. So, in those methods we are being forced to sing
unnaturally.

The quality of MDI transcribed would also depend on the
hardware capabilities. Also, some systems are based on
software that needs intelligent algorithms for providing better
quality music transcriptions. However, most of these systems
use Digital Signal Processor (DSP) to process audio signals. A
microcontroller as the main processor to process real-time
audio signals is investigated in this study. The proposed
technique is implemented completely with this microcontroller
without a need for much complex calculations.

In this paper, we introduce an audio to MIDI transcription
module encompassing a microcontroller and a pitch tracking
algorithm. A hardware based real-time converter is offered
which uses a real-time algorithm for implementing medium
quality MIDI generator. The main aim is to extract music
information from the voice signals to convert to MIDI
representation. This hardware must be able to estimate some
parameters such as pitch, note onset time, and duration, from
the audio signals and generates MIDI messages.

The rest part of this paper is organized as follows. Section
II describes the MIDI encoding algorithm for real-time signal
processing. Section III describes the hardware architecture
that is proposed for implementing the algorithm. Section IV
describes the interface hardware modules. Experimental
results are presented in section V.

A Real-Time Signal Processing Technique for
MIDI Generation

Farshad Arvin, and Shyamala Doraisamy

B

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:3, No:2, 2009

284

II. MIDI ENCODING ALGORITHM
The encoding algorithm implemented with the hardware

circuit converts real-time sampled audio signals to standard
MIDI data. This allows real-time voice processing without
using complex calculations such as FFT. A high frequency
microcontroller is used as the main processor to implement the
real-time digitisation algorithm.

The MIDI coding method that is used for processing real-
time sounds, extracts single track MIDI events. This real-time
conversion algorithm consists of two fundamental steps: a)
peak detection using some analog components for converting
voice to digital data and fundamental functions for peak
detection. b) extract pitches and notes from detected peaks
which employs several functions to extract MIDI parameters
and output sequences. In Fig. 1 the proposed algorithm that is
used to generate MIDI codes is shown. The process starts with
capturing analog sound signals and then converts to digital
form. The sound will be captured with a microphone and after
filtering it will eliminate unwanted frequencies. It will then be
sent to the peak detector module. The output of the peak
detector module is peak streams which are used in the next
module for extracting pitches. The note retrieval module
processes the input peaks and generates notes. Also, note start
times and delta times are estimated in this retrieval module.

Fig. 1 MIDI encoding sequence diagram

A. Peaks Detection
In musical transcription, fundamental frequency is the

significant part of a wave for conversion. The musical sound
is a composite of many harmonics. While the fundamental
frequency gives the sound its pitch, the harmonics give the
sound its characteristic timbre. The sounds of a violin and
piano are different even if they are all playing the same pitch.
The difference is caused by the complex mixture of harmonics
from each instrument as shown in Fig. 2.

Fig. 2 Harmonics of similar notes played with Violin and Piano

Harmonics, which occur at integral multiples of frequency,
often confuse pitch extracting and make it more difficult to
decide the fundamental. Hence, many harmonics are
eliminated with input filters.

Hardware receives digitised signal from input. The first row
of Fig. 3 shows the analog signal input and the second row is
the digital state of the input. The peak detector unit uses the
digital sate of the sound wave for detecting fundamental
frequencies.

Fig. 3 (a) captured waveform signal with microphone, (b) converted

input signals to digital pulses

Signal section is extracted by amplitude slicing a group of
sequential significant peaks. All peaks that their absolute
levels |V(p)| are more than the specified threshold value ,will
be selected. Moreover, every peak of each section that has a
similar fundamental frequency is subdivided by a fundamental
frequency of each peak. This subdivision allows finding the
difference between note numbers of each pair of peaks in
section [7]. Calculated fundamental frequency will be send to
Note Retrieval unit for note extraction.

B. Note retrieval:
The note number N(p) is calculated by fundamental

frequency f(p) with the following formula:

() 606.261/)(log40)(+= pfpN (1)

The MIDI note number 60 is the musical note name C4 with
frequency value 261.6 Hz, or middle C note in musical
instruments. This formula indicates, if the value f(p) is
increased to 2 times, the value of 12 which is an octave
interval will be added to the N(p).

Each calculated section is equivalent to one musical note,
and will generate MIDI encoding based on the standard MIDI
file formats [1]. Basically, there are two important event
messages, which are a Note-On and a Note-Off. So, the Delta
Time value will be calculated before each command as
follows:

Delta Time 1, Note-On, Note Number 1, Velocity 1
Delta Time 2, Note-Off, Note Number 2, Velocity 2

Defined MIDI code for Note-On command is the
hexadecimal value “9x”. Also “8x” value is defined for Note-
Off command. In these commands, x shows channel number
of each note. Note Number 1 and 2 is calculated by the
formula (1), and Velocity 1 and 2 is also the same value that
are given by (2) as follows:

() 127)(max ⋅sVsqrt (2)

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:3, No:2, 2009

285

III. IMPLEMENTED HARDWARE ARCHITECTURE
This section describes a designed decoder hardware that

generates MIDI commands such as notes and control
messages. An ATMEGA168 microcontroller is used in
described algorithm implementation. The microcontroller
performance of 20 MIPS throughput at 20 MHz supplies
enough rates for implementing encoding algorithm. Also, each
IO of this microcontroller works in both digital and analog
modes simultaneously. This chip is employed as the main
processor which provides serial MIDI data from the received
microphone analog signals. The serial data is sent to PC to be
saved in the MIDI format. Moreover, external memories are
used for caching outputs and buffering. These memories are
utilized in offline mode as well. The proposed method is
implemented with C language and some critical functions of
algorithm are implemented with assembly language.
Experimental results show that, Assembly routines provide
better results than C functions in some critical routines. Thus,
timers and ADC (Analog to Digital Converter) interrupt
routines are written in assembly instructions to prevent
probable errors in extraction calculations. Fig. 4 is the
architecture of the proposed system.

Fig. 4 Architecture of MIDI converter hardware

The Universal Synchronous and Asynchronous serial

Receiver and Transmitter (USART) is a highly flexible serial
communication device. This device is used for transmitting
MIDI data to PC. The serial RS232 protocol is selected for
communicating between the designed hardware and PC [8].
The hardware sends MIDI contents as serial bits in 38.4 Kbps.
Therefore, a TXD interrupt should be enabled to prevent data
loss. This interrupt routine helps the system to transmit MIDI
streams. The implemented method does not need any DSP.
Just one microcontroller with high frequency external
oscillator is enough for getting good results, although DSP
results have better quality in comparison with
microcontrollers. However, the selected microcontroller
executes all algorithms with limited error rates. The price of
microcontrollers is also cheaper than low-cost DSPs. Thus, it
is an important reason for choosing microcontrollers as a
processor in a lot of projects. Also, microcontrollers are
installed in simple boards and do not require complicated
hardware.

The preamplifier unit is used between microphone and
microcontroller that provides better wave form to process. The
preamplifier output signals are detected with the analog unit

of the microcontroller. The ADC’s typical resolution is 10-bits
and maximum ADC frequency is approximately 625 KHz.
Signal components higher than the Nyquist frequency (fADC/2)
should not be present for either kind of channels, to avoid
distortion from unpredictable signal convolution. Hence, a
low-pass filter is used for applying the signals as inputs to the
ADC to remove high frequency components. The cut-off
frequency is calculated with the following formula:

RC
fc .2

1
2

1
ππτ

== (3)

The resistor and the capacitor values are calculated for 3.40
KHz (R=470Ω and C=0.1μf). A simple filter circuit is
employed for this implementation as shown in Fig. 5.

Fig. 5 Low-pass filter is used for input line filtering

A normal conversion takes 13 ADC clock cycles. Thus,

ADC clock should be 572 KHz for providing 44 KHz sample
rate. If a lower resolution than 10 bits is employed, the input
clock frequency to the ADC can be higher values to get a
higher sample rate. Consequently, 8-bits sampling size is
selected for our implementation that each sample value is
between 0 and 255. For single-ended conversion, the result is:

REF

IN
ADC V

V
V

256⋅
= (4)

Where VIN is the voltage of the input pin and VREF is the
selected voltage reference. An ADC interrupt routine is used
for buffering samples. This routine will be called after each
conversion value automatically.

As we stated, working in analog and digital modes
simultaneously for each input pin is suitable feature of this
microcontroller series. So, this feature is used for peak
detecting unit of suggested algorithm.

IV. INTERFACE HARDWARE MODULES
The microcontroller is employed as the main processing

unit which works with an external 20 MHz clock source. This
frequency provides the hardware to execute defined tasks.
Furthermore, two serial external memories are used in the
buffer unit. Also, these memories will assist the processor in
an offline mode generating MIDI codes. The reference voltage
stability is a significant subject in using ADC unit, because its
output will change if VREF is not constant, as in (4). For this
reason, XC6206 component is used in the presented
implementation reference unit. The XC6206 series are precise,
low power consumption, high voltage, positive voltage

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:3, No:2, 2009

286

regulators manufactured using CMOS and laser trimming
technologies. The series provides large currents with a
significantly small dropout voltage as shown in Fig. 6.

Fig. 6 Schematic of xc6202 series voltage regulator

SMT components are selected for the implementation of the

designed main board. One of the SMT component benefits is
the reduction in noise. This is primarily due to smaller
electrical paths compared to leaded components. This feature
is very useful in high frequency implementations where low
noise contribution is mandatory and is a design feature.

In addition, simple software is written which saves received
serial data in hard disk with ‘.mid’ extension. This software is
a suitable test bed for acknowledging implemented algorithm.
It uses PC serial COM port for receiving MIDI data.

V. EXPERIMENTAL RESULTS
The designed hardware was tested with several sound

samples that were played with an electronic keyboard. This
section describes the real-time signal processing technique for
a simple sound wave that is played with piano sound. A piano
tone constantly changes in timbre as it decays after it is
sounded. Fig. 7 shows original sound waves that are piano
sounds. The first row wave is captured by a simple low quality
microphone and the second row wave is captured by a high
quality microphone. Experimental results show that,
microphone quality is a significant reason to provide suitable
outputs.

Fig. 7 Captured sample sound waves. (a) captured by low quality

microphone. (b) captured by high quality microphone

Fig. 8 (a) is the energy diagram of the signal captured with
the low quality microphone and Fig. 8 (b) is with the high

quality microphone. The energy level of sound is a significant
parameter to estimate exact pitch number from frequencies.
Low energy sounds will be eliminated when the peak detector
module processes the input signals.

Fig. 8 Energy diagram of captured sample waves. (a) low quality

microphone. (b) high quality microphone

Fig. 9 shows frequency diagram of sample wave. As the
diagram illustrates, there are three levels of frequencies in the
sample wave that are combined with some noises. C4, D4, E4
were played with piano and were captured with our hardware
interface.

Fig. 9 Frequency diagram of sample wave

To implement this proposed hardware, real-time voice

signals were divided in to several windows as shown in Fig.
10. In these windows, samples are captured and saved to an
array in memory. After each sampling period, the
microcontroller will process these samples to find the
fundamental frequency. When the size of windows gets
bigger, a lot of samples will be captured and output will be
near to real frequency. But if the window size is large, the
processor will not have enough time to process the captured
data. In addition, selecting a big size window can result in
losing notes with short durations.

Fig. 10 Input signal is divided into several windows

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:3, No:2, 2009

287

In Table I, there are three different outputs from differing
window sizes. In those experiments, duration times of 10, 100,
and 500 ms were selected to process the same played notes. In
each window size, 200 notes were played and results were
obtained. The true extracted notes percents are shown in note
durations. Middle size windows have average result in both
notes size. Hence, 100 ms window size was selected for next
step of experiments. Dynamic window sizes could possibly
generate better results for differing note sizes. However, this
will have to be further investigated. For implementing
dynamic window sizes, we have to detect gaps between
played notes and estimate optimal window size for getting
improving the performance.

TABLE I

PERCENTAGE OF CORRECTLY TRANSCRIBED NOTES

Window Size Short duration notes Long duration notes

10 ms 30 % 40 %
100 ms 75 % 80 %

500 ms 60 % 70 %

After selecting window size, the next step in the
experiments was obtaining output scores from playing three
sequential notes. Proposed hardware produced similar notes
with original played notes but they are not the exact same
notes. Fig. 11 (a) is the original notes that are played with
electronic keyboard. Fig. 11 (b),(c) are real-time transcribed
notes with the proposed hardware in none silent environment.
These outputs were not good results. Fig. 11 (d) transcribed
notes with isolated hardware in silent environment. That
hardware employs some filters in power supply unit and
signal input. Also, used separated power supply for analog
unit and digital unit with separated ground signals.

The filtering hardware provides better MIDI encodings
from the sound waves. In the last experiment, sounds were
captured in silent room and also a high quality fixed
microphone was employed for getting suitable results. Results
show that, real notes retrieval will be accessed in ideal
environment. Therefore, some hardware units must be
improved for getting suitable results in noisy environments.

VI. CONCLUSION
This paper presents a new designed hardware for MIDI

standard that transcribes real-time voice to MIDI data. The
implemented transcription algorithm with microcontroller
processor is an aim of this paper. Using simple algorithm for
real-time processing and hardware circuit for MIDI interface
without require any DSP is a feature of this paper. The
experimental results show that the proposed hardware
generates good transcribed output in silent environment. Also,
some hardware filters can assist to get excellent results. For
future work, dynamic windowing approach will be
implemented for getting better results in all note durations.
This implementation can be improved to multi-track MIDI
code generator.

Fig. 11 (a) original played notes with electronic keyboard, (b),(c)
transcribed notes in none silent environment, (d) transcribed notes

when used some filters in hardware power supply and isolated analog
and digital units

REFERENCES
[1] Eleanor Selfridge-Field., “Beyond MIDI”, The MIT Press, 1997.
[2] Mark Nelson “Getting Started in Computer Music”, Thomson Course

Technology PTR, 2006
[3] Muramatsu T., Hai Q., Hashimoto S., “Sound database system retrieved

by sound,” IPSJ Proceedings of 54-th National Conference, 1997.
[4] A. Ghias, J. Logan, D. Chamberlin, and B. C. Smith, “Query by

humming: Musical information retrieval in an audio database.” Cornell
University,1997

[5] N. Itou, K. Nishimoto, “A Voice-to-MIDI System for Singing Melodies
with Lyrics” ACE 2007, Salzburg, Austria, 2007

[6] Jun, S., Takeshi, M., Masanobu, M. and Masuzo, Y., “Automatic
Scoring of Melodies Sung by Humming” Tech. Rep. Musical Acoust..
Soc. Jpn., Vol.23, No.5, pp.95-100, 2004.

[7] Toshio Modegi1, Shun-ichi Iisaku, “Proposals of MIDI Coding and its
Application for Audio Authoring”, MMCS, IEEE International
Conference, pp 305 – 314 , 1998

[8] Popa, M.; Popa, A.S.; Cretu, V.; Micea, M. “Monitoring Serial
Communications in Microcontroller Based Embedded Systems” ICCES,
pp 56 – 61 , 2006

