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Abstract—By the application of an improved back-propagation 
neural network (BPNN), a model of current densities for a solid oxide 
fuel cell (SOFC) with 10 layers is established in this study. To build 
the learning data of BPNN, Taguchi orthogonal array is applied to 
arrange the conditions of operating parameters, which totally 7 factors 
act as the inputs of BPNN.  Also, the average current densities 
achieved by numerical method acts as the outputs of BPNN. 
Comparing with the direct solution, the learning errors for all learning 
data are smaller than 0.117%, and the predicting errors for 27 
forecasting cases are less than 0.231%. The results show that the 
presented model effectively builds a mathematical algorithm to predict 
performance of a SOFC stack immediately in real time. 

Also, the calculating algorithms are applied to proceed with the 
optimization of the average current density for a SOFC stack. The 
operating performance window of a SOFC stack is found to be 
between 41137.11 and 53907.89.  Furthermore, an inverse predicting 
model of operating parameters of a SOFC stack is developed here by 
the calculating algorithms of the improved BPNN, which is proved to 
effectively predict operating parameters to achieve a desired 
performance output of a SOFC stack.

Keywords—a SOFC stack, BPNN, inverse predicting model of 
operating parameters, optimization of the average current density

I. INTRODUCTION
ncluding two electrodes of anode and cathode, as well as one 
solid electrolyte between the anode and cathode, a solid 

oxide fuel cell (SOFC) delivers oxygen ions from cathode to 
anode.  Methane and ethanol serve as the fuel, whose operating 
temperature is very high about 600-1000°C.  Many studies had 
been investigated in the performance simulation under different 
conditions recently; such the effects of fuel rate, inlet 
temperature, operation pressure, cell size, etc. on the 
temperature and current density distribution. Yakabe et al. [1] 

modeled an anode-supported planar SOFC unit with double 
channels of counter-flow pattern.  Their results indicated that 
the water shift reaction could effectively reduce the 
concentration polarization.  Later, Yakabe et al. [2] simulated a 
three-dimensional model for a unit of planar SOFC, in the 
considerations of internal or external steam reforming, water 
shift reaction, and diffusion of gases with co-flow or 
counter-flow pattern.  Recknagle et al. [3] also simulated a 
three-dimensional unit of SOFC with three kinds of flow 
patterns, i.e. co-flow, counter-flow, and cross-flow.  Their 
results showed that the pattern of the co-flow had the most 
uniform temperature distribution and the smallest thermal 
gradients.  Beale, et al. [4] investigated three different 
approaches in numerical methods for solving a unit and 
ten-stack SOFC in cross-flow, which results indicated that the 
direct numerical method is the most accurate method for a 
single cell, and the simpler approaches have the potential to 
supplant or complement the direct numerical method in the 
analysis of fuel cell stacks.   The study of Iwata et al. [5] 
investigated the effects of gas re-circulation ratio, operating 
pressure and physical properties on current and temperature 
distributions by establishing a numerical program to estimate 
the temperature and current density profiles of a planar-type 
SOFC unit with co-flow, counter-flow, and cross-flow. 

Also, coupling electrochemical kinetics with fluid dynamics, 
Huang et al. [6] developed a multi-physics model to evaluate 
the transport phenomena in a mono-block-layer SOFC.  
Because the spatial variation of the catholic and anodic surface 
over-potential is considered locally, their model improves the 
prediction of the local current density distribution. Janardhanan 
et al. [7] offered a performance analysis of a planar solid oxide 
fuel cell under direct internal reforming conditions to study the 
influences of various operating parameters on cell performance. 
Their results suggested that the efficiency of the fuel cell is 
higher for pre-formed fuel compared with non-reformed fuel. 
Araki et al. [8] presented a power generation system consisting 
of two SOFCs at different operating temperatures and in the 
serial connection. Their results showed that the power 
generation efficiency of the two-stage SOFC is somewhat 
higher than that of SOFC using only a high-temperature. 
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However, few reports have investigated the effects of 
non-uniform inlet flow on fuel cell temperature and current 
density. Hirata and Hori [9] presented a numerical method to 
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discuss the relationships between planar and stacking direction 
gas flow uniformities, and cell performance in a co-flow type 
fuel cell.  Liu et al. [10] as well as Yuan and Liu [11] developed 
a reliable numerical method to examine the effect of inlet flow 
maldistribution in the transverse direction on the thermal and 
electrical performance of a MCFC and SOFC unit with 
cross-flow configuration. Their results showed that the 
non-uniform inlet flow has only slightly effects on the average 
temperature and average current density, but induces 
significantly the non-uniformities of temperature and current 
density for most maldistribution patterns. The non-uniform gas 
flow rate in each stack is very severe because of the gas 
manifold. Some research [12], [13] and [14] identified an 
obvious maldistribution of the gas flow rate in the stacking 
direction of a SOFC stack.  

Also, Yuan [15] investigated the non-uniform effect of gas 
flow rate on the thermal and electrical performance of a SOFC 
stack, considering a uniform profile and a progressively 
increasing profile in the stacking direction with two boundary 
conditions, adiabatic and constant temperature, on the top and 
bottom faces of a SOFC stack. His results show that the 
non-uniform inlet flow rate of the fuel dominates the current 
density distribution, and the air dominates the temperature field 
of a SOFC. Also, the power at the constant boundary 
temperature condition can elevate 3% more than that at the 
adiabatic boundary condition. Although the non-uniform effect 
on the electrical performance of each stack is apparently 
realized, the optimal conditions in consideration of all 
non-uniform inlet flow rates and parameters as well as their 
importance are still difficult to obtain by the numerical method. 

Instead of the numerical method, neural network architecture 
has currently become more and more important as an effective 
learning technique in the field of pattern recognition since 
neural networks have strong abilities to learn, to self-organize 
information, and need only few specific requirements and prior 
assumptions for modeling.  These advantages have attracted 
interest in research on SOFC performance prediction.  
Arriagada et al. [16] developed a novel modeling tool for 
evaluation of solid oxide fuel cell performance by an artificial 
neural network at different operational parameters of the SOFC, 
such as gas flows, operational voltages, current density, etc. 

Based on the analyses [15], global performance for a solid 
oxide fuel cell (SOFC) stack will proceed further with the 
development of a rapid performance prediction scheme in this 
study.  Usually, it needs a lot of computer calculating time to 
obtain the direct solutions of temperature and current density 
filed by the numerical method. Therefore, a rapid calculation 
scheme for predicting the average temperature and current 
density in each layer of a SOFC stack by the application of back 
propagation neural network (BPNN) will be developed. The 
algorithm developed by the BPNN will provide a rapid 
prediction of current density so as to complete dynamic control 
when the mole fraction of species and molar flow rate in inlet is 
considered to be changeable. 

The researching method first utilizes Taguchi’s orthogonal 
array to arrange the inputs of BPNN with different factors and 

levels, and the direct solutions of average current densities of 
each layer of a SOFC stack for every case derived by the 
numerical method [15] serve as the outputs of BPNN. Thus, the 
important priority of factors is firstly decided by the analysis of 
variance (ANOVA), and then an improved Back-Propagation 
Neural Network is utilized to learn the learning data and build a 
model of performance for a SOFC stack. Thus, the 
mathematical algorithms are applied to proceed with the 
optimization of the average current density. Finally, by the 
calculating algorithms of the improved BPNN, an inverse 
predicting model of operating parameters to achieve a desired 
performance output of a SOFC stack will be developed. 

II. DESCRIPTION OF THE THEORY

A solid oxide fuel cell stack investigated here is formed by 
connecting 10 unit cells as shown in Fig. 1. The unit cell from 
top to bottom includes the interconnector with the flow 
channels, fuel, anode, electrolyte, cathode and air. The size of 
the unit cell is 0.2 m × 0.2 m in the x–y plane, and the fuel and 
the air flows along the interconnecting channels as well as 
along the x and y direction. The thicknesses of the unit cell, 
interconnector and interface between interconnector and cell 
are 0.6 × 10 3m, 3 × 10 3 m, 1.8 × 10 3 m, respectively.  In our 
previous investigation [15] suggested that the non-uniform 
inlet molar flow rate of the fuel in the stacking direction 
induces larger cell voltage variations. Therefore, a better 
operation for a SOFC is keeping constant inlet profile in fuel 
side here.  Because this study plans to find the important factors 
of operation and the suitable operation conditions in a certain 
electrical performance, only a uniform profile in the fuel side 
and a uniform or progressively increasing profile in the air side 
are considered to construct two patterns of non-uniform inlet 
air flow. Fig. 2 shows the whole SOFC stack with two inlet 
flow distributions. 

Fig. 1. Schematic diagram of a unit solid oxide fuel cell stack with 
cross-flow configuration. 
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 Fig. 2. Two inlet flow patterns in an SOFC stack. 

This study uses the numerical results in literature [15] to 
obtain the learning data of BPNN, where FORTRAN code was 
applied to solve the mass equations, energy equations, and 
electrochemistry equations.  The composition of fuel includes 
hydrogen (H2), nitrogen (N2), carbon dioxide (CO2), carbon 
monoxide (CO) and water (H2O).  The mass equations connect 
the molar flow rate change in the fuel and the air, and the 
species consumption linking the local current density.  
Moreover, the conservation of energy for the fuel, air, cell, and 
interconnector for each stack are taken into consideration. 

The molar flow rate of the fuel and the air in each stack is 
different because of the non-uniform distribution of molar flow 
rates in the stacking direction. In this study, the non-uniform 
flow pattern in the stacking direction has a progressively 
increasing profile, so the molar flow rate of each stack can be 
expressed in terms of the stack number as follows: 

 (1) 

 (2) 
,where fn  and an  represents the mean flow rate of the fuel 

and the air in the SOFC stack, and the molar flow rate in each 
stack depends on the deviation in the stacking direction, dstack,
as well as the total number of cells, nstack. The deviation in the 
stacking direction is the ratio of the variation of flow rate to the 
mean flow rate; its value may be positive or zero, representing 
the progressively increasing profile and uniform profile, 
respectively.

In the numerical analysis [15], the voltage loss caused by 
electrolyte ohmic polarization, electrode activation polarization 
and concentration polarization are considered. Therefore, the 
cell voltage equals the Nernst voltage minus the polarization 
voltages (ohmic, activation and concentration) in the anode, as 
follows: 

Here r is 300 × 10 7  m 2 [20], i0,anode and i0,cathode are 1290 
and 970 A m 2 [21], respectively, anode is 0.05 mm, and Danode

is 2 × 10 5 m s 1 [22]. The method of solving these governing 
equations in a SOFC unit has been developed in the author's 
previous research [20]. The numerical method by FORTRAN 
code uses mass and energy balance equations to solve the mole 
fraction of each species, as well as the temperatures of the fuel, 
air, cell, and interconnector. The solving method then 
calculates the current density from Eqs. (3) to (6), based on the 
assumption that the cell voltage is uniform over the cell 
reaction area. 

III. MODELING BY BACK-PROPAGATION NEURAL NETWORK

The algorithm of the back propagation neural network 
(BPNN) can map the I/O relationship adequately and is readily 
suitable for multivariable systems.  However, it inherits the 
major defect from gradient descent techniques that the set of 
selecting parameters usually minimizes the learning error only 
at some interval and not at the global interval.  Therefore, Wang 
and Wu [23] integrated an error distribution function to 
improve the BPN network, which is proved to be useful to 
overcome local minimum problem effectively, so as to find the 
global minimum solution and greatly accelerate the 
convenience speed.  Hence, the algorithm of the improved 
BPNN will be applied here to establish a rapid calculating 
scheme for predicting the average current densities in each 
layer of a SOFC stack. 

An artificial BPNN usually has multi-layers.  The input layer 
accepts the environmental information; the output layer carries 
information to the environment. The layers lying between the 
input and output layers are called the hidden layers.  The basic 
unit  the neuron  acts as a “processing element”.  For an 
example shown in Fig. 3, the jth neuron in the nth layer has 
many inputs  which come from the neurons in the (n-1)th 
layer, but only a single output  that carries its signal to the 

neurons in the (n+1)th layer.  An adjustable weight, ,

representing the connecting strength, lies between the jth input 
branch in the nth layer and the ith neuron in the (n-1)th layer.  
The basic function (net sum) of a neuron is to sum up its inputs 
and by means of the transfer function to produce an output.  An 
internal threshold t is usually introduced and subtracted from 
the sum.  Mathematically, the net sum  of the jth neuron in 

the nth layer can be expressed as 
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, where f ( ) is the transfer function. The sigmoid function is a 
type of the transfer function used most commonly.  Rangwala 
[24] presented a new form of the sigmoid function adopted here  (5) 
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as eq.(8) in order to make the network respond to arbitrary 
input/output mapping, where sigmoid slope  regulates the size 
of the input zone beyond which the neuron output saturates as 
well as the steepness of the sigmoid curve.  The maximum 
output  controls the maximum output of one neuron.
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IV. OPTIMIZATION USING IMPROVED BPNN
As mentioned above, the average current density for each 

layer in a SOFC stack can be obtained by the model developed 
by the improved BPNN. Usually, the power of a SOFC stack is 
illustrated by its current density. The larger of the sum of 
current densities for each layer means the greater performance 
for a SOFC stack. It attracts us great interest in where the best 
performance is and how the operating parameters of a SOFC 
stack are selected. Thus, an optimized design of operating 
parameters based on the performance of a SOFC stack is 
developed here, with a proper objective function F defined as  
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Fig. 3  Schematic diagram of a neuron model 

In the back propagation learning scheme, the calculated 
outputs in the output layer, x , are compared with the desired 

outputs, dj, to find the error, before the error signals are 
propagated backward through the network.  The error function 
E can be defined as 

q
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, where q is the total number of layers in the BPNN, p is the 
total number of the output neurons. Also, the weightings cj for 
the average current density of the jth layer in a SOFC stack 

1. The optimized process is to 
adjust the operating parameters , inputs for the input layer of 

the BPNN, so that the objective function can be maximized.  In 
order to accomplish this, gradient descent technique is applied 
to calculate the gradient of the objective function with respect 
to each operating parameter.  Then the operating parameters are 
changed and adjusted in the direction of the steepest descent of 
the objective function. The adjustment of the operating 
parameters can be expressed as  

q
jx

are same here as value equal to 
1
jx

, where q is the total number of layers in the network and p the 
total number of the output neurons.  The learning process is to 
adjust the learning parameters, W, t, and , so that the error E
can be minimized and the mapping between inputs and outputs 
can be realized.  In order to accomplish this, gradient descent 
technique is applied to calculate the gradient of the error with 
respect to each learning parameter.  Then the learning 
parameters are changed and adjusted in the direction of the 
steepest descent of the error. The training formulae to adjust W,
t, and  can be written as   
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, where * is the converging rate, 0 *< 1, T is the iteration, 
and * is the momentum factor, 0 *< 1.  Also, all the 

are constrained between their top and 

wn levels. 
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do
)()()1( TxT n

j
n
j

n
j

n
j

n
j

 (13) In order to sim

, where  is the learning rate, T is the iteration, and is the 
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the errors that are propagated backward to the network.  For the 
output layer, the quantity 

j
n  is first decided by the difference 

of the desired outputs and the calculated outputs, and then the 
quantity  can be expressed by the quantity
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plify the derivatives of F with respect to every 
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For hidden layers, the quantities n
j
 and  can be derived as n

j
Secondly, these quantities of the output layer are propagated 

to the lower hidden layers.  For the hidden layers, the quantities 
 and 
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For input layer, the quantities 1

j
 can be derived as 

k
jkjj w221  (27) , where * is the converging rate, 0 *< 1, T is the iteration, 

and * is the momentum factor, 0 *< 1.  Also, all the 
operating parameters  are constrained between their top and 

down levels. 

1
jxThe quantities n

j
 and  are propagated backward, a 

calculating process similar to the above model developed by 
the improved BPNN.  For the output layer, the quantity 

n
j

n
j
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first decided by the cj, the weighting for the output average 
current density  of the jth layer in a SOFC stack, and then the 

quantity  can be obtained by the quantity

q
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n
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j
.  The process of 

calculation is characterized by the adoption of the calculating 
algorithm of the BPNN from the output layer back propagated 
to the input layers. Thus, the adjustment of the operating 
parameter can be rewrote as 

Similarly, the quantities n
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 and  are defined as the above 

section, which calculating process are propagated backward by 
the application of BPNN. Differently, the quantity 
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Also, the quantity n  is obtained by the quantity
j

n
j
.  The 

process of calculation applies the calculating algorithm of the 
BPNN from the output layer back propagated to the input 
layers. Thus, the adjustment of the operating parameter can be 
expressed as 

The scale of the performance, i.e. operating performance 
window, of a SOFC stack is desired in practical application, 
whose value is between the maximum F and minimum F.  The 
Maximum F can be obtained as mentioned above. On the other 
hand, the minimum F can be achieved just by changing the 
opposite direction of the steepest descent of the objective 
function as the operating parameters are adjusted. Thus, the 
adjustment of the operating parameters for the minimum F can 
be expressed as 

)()1( 111 TxTx jjj
 (33) 

)()1( 111 TxTx jjj
 (29) 

V. INVERSE PREDICTION OF OPERATING PARAMETERS BY USING 
IMPROVED BPNN

VI. RESULTS AND DISCUSSIONS

6.1 The important priority of factors decided by Taguchi’s 
method

For global approximation learning of the BPNN, it is very 
important that the training data uniformly cover the entire 
design space.  Ideally, equal level for all factors and same 
distance between adjacent levels in a factor are preferred.  This 
is easily achieved by a full factorial design. However, for many 
factors with many levels, the design points of training data are 
extremely huge, a result that make neural network 
approximation impossible. An alternative approach is to use 
randomly generated design space. The shortcoming with this 
approach is without guarantee that the design points will cover 
the entire space, especially as the number of factors is large. 
Furthermore, levels of factor may not distribute uniformly, so 
the learning processes would center on some special levels and 
large error occurs. 

Sometimes the performance of a SOFC stack is requested to 
be maintained at or changed to a certain value in practical 
operation.  An operator would prefer to efficiently realize the 
proper operating parameters to obtain the desired performance 
of a SOFC stack. Thus, the inverse prediction of operating 
parameters is developed here to achieve a desired performance 
of a SOFC stack.  Once a desired performance output Q, limited 
in the operating performance window of a SOFC stack, is 
decided, the object function can be derived as the sum of square 
of the difference between a temporary performance and the 
desired Q value.   

2

1
QxcF
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An ideal approach is to use Taguchi design [25]. This method 
is a partial factorial design which adopts orthogonal arrays to 
design training data, a characteristic that every level in all 
columns is self-balance as well as levels in any two columns are 
mutual-balanced. Also, this method can efficiently lower the 
design data with the consideration of the whole space and all 
levels. By utilization of Taguchi’s method, moreover, the 
significance of factors can be assess by F-test cooperated with 
the analysis of variance (ANOVA). These advantages have 
attracted our interest in the adoption of this method to design 
the training data of the BPNN. 

The desired performance is on the target when the object 
function has the minimum value, i.e. 0. Therefore, the 
optimized process is to adjust the operating parameters  so 

that the objective function can be minimized. Similarly, 
gradient descent technique is applied to calculate the gradient 
of the objective function with respect to each operating 
parameter.  Then the operating parameters are changed and 
adjusted in the reverse direction of the steepest descent of the 
objective function. The adjustment of the operating parameters 
can be expressed as 

1
jx

The array of the training data are carried out using a variety of 
factors and levels, as listed in Table 1. The unit of mole flow in 
both anode inlet and cathode inlet is mol s 1.  The other 
parameters and conditions are illustrated below. As air is 
provided for the cathode inlet, the molar fractions of  

2OX
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and
2
 in cathode inlet are thus fixed to 0.22 and 0.78, 

respectively. The inlet cell temperatures for both the fuel and 
the air are assigned at 898K. Heat transfer area per unit base 
area (m2 m 2) is 1.0 for the interface between interconnector 
and air, interconnector and cell as well as interconnector and 
fuel. Also, heat transfer area per unit base area (m2 m 2) is 0.5 
for the interface between cell and air as well as cell and fuel. 
The conductivity (W m 1 K 1) for the unit cell, interconnector 
and interface between interconnector and cell are 2, 13, 1, 
respectively. The ambient operation pressure is set to 1 × 105

Pa.

NX TABLE 1.
THE FACTORS AND LEVELS APPLIED IN L50(21×511)

factor description symbo
l

Level
1

Level
2

Level
3

Level
4

Level
5

A Air flow deviation in the stacking
direction dstack 1 1.5

B Mole flow rate in anode inlet N f 0.06 0.075 0.09 0.105 0.12
C Molar fraction H2 in anode inlet 2HX 0.24 0.3 0.36 0.42 0.48
D Molar fraction CO2 in anode inlet 2COX 0.03 0.04 0.05 0.06 0.07
E Molar fraction H2O in anode inlet OHX

2 0.03 0.04 0.05 0.06 0.07
F Molar fraction CO in anode inlet COX 0.2 0.24 0.28 0.32 0.36
G Mole flow rate in cathode inlet  Na 0.12 0.15 0.18 0.21 0.24

TABLE 2.
THE DESIGN OF TRAINING DATA FOR ALL FACTORS AND LEVELS BY L50(21×511)

Exp. A B C D E F G Ia1 Ia2 Ia3 Ia4 Ia5 Ia6 Ia7 Ia8 Ia9 Ia10 Ave.
1 1 1 1 1 1 1 1 4602.28 4650.64 4669.90 4677.02 4679.25 4679.10 4676.38 4668.03 4645.64 4589.95 4653.82 
2 1 1 2 2 2 2 2 4627.48 4678.19 4697.31 4704.07 4706.09 4705.95 4703.45 4695.44 4672.95 4613.75 4680.47 
3 1 1 3 3 3 3 3 4645.11 4697.39 4716.29 4722.71 4724.62 4724.49 4722.13 4714.44 4691.98 4630.25 4698.94 
4 1 1 4 4 4 4 4 4658.16 4711.59 4730.27 4736.45 4738.25 4738.12 4735.90 4728.43 4706.03 4642.38 4712.56 
5 1 1 5 5 5 5 5 4668.24 4722.50 4740.96 4746.92 4748.61 4748.49 4746.36 4739.12 4716.84 4651.68 4722.97 
6 1 2 1 2 3 4 5 4330.87 4388.06 4406.71 4412.47 4414.01 4413.91 4411.98 4404.97 4382.35 4313.44 4387.88 
7 1 2 2 3 4 5 1 4383.60 4437.12 4457.28 4464.31 4466.41 4466.28 4463.73 4455.46 4431.89 4369.83 4439.59 
8 1 2 3 4 5 1 2 4435.49 4490.69 4510.37 4516.90 4518.76 4518.65 4516.36 4508.58 4485.30 4420.45 4492.16 
9 1 2 4 5 1 2 3 5138.96 5190.07 5207.82 5213.55 5215.17 5215.06 5213.07 5206.18 5185.01 5124.40 5190.93 
10 1 2 5 1 2 3 4 5076.95 5129.26 5147.00 5152.63 5154.20 5154.10 5152.14 5145.34 5124.01 5061.49 5129.71 
11 1 3 1 3 5 2 4 4112.86 4172.65 4191.63 4197.29 4198.74 4198.65 4196.85 4190.01 4167.03 4095.18 4172.09 
12 1 3 2 4 1 3 5 4880.57 4935.95 4953.35 4958.44 4959.77 4959.68 4958.04 4951.83 4930.69 4863.69 4935.20 
13 1 3 3 5 2 4 1 4840.98 4893.77 4912.79 4919.09 4920.87 4920.76 4918.61 4911.19 4888.86 4827.39 4895.43 
14 1 3 4 1 3 5 2 4825.91 4879.95 4898.69 4904.72 4906.39 4906.30 4904.24 4897.06 4874.83 4811.17 4880.93 
15 1 3 5 2 4 1 3 4816.03 4871.45 4889.88 4895.54 4897.07 4896.98 4895.09 4888.28 4866.24 4800.26 4871.68 
16 1 4 1 4 2 5 3 4516.82 4574.80 4593.13 4598.48 4599.85 4599.77 4598.09 4591.65 4569.65 4500.37 4574.26 
17 1 4 2 5 3 1 4 4558.01 4616.69 4634.58 4639.67 4640.92 4640.85 4639.31 4633.15 4611.49 4540.72 4615.54 
18 1 4 3 1 4 2 5 4585.81 4644.59 4662.31 4667.30 4668.55 4668.47 4666.93 4660.85 4639.28 4567.98 4643.21 
19 1 4 4 2 5 3 1 4593.27 4649.68 4669.15 4675.27 4676.94 4676.84 4674.83 4667.61 4644.72 4578.73 4650.70 
20 1 4 5 3 1 4 2 5304.75 5357.26 5374.72 5380.08 5381.51 5381.43 5379.68 5373.31 5352.53 5290.42 5357.57 
21 1 5 1 5 4 3 2 4243.10 4303.63 4322.49 4327.82 4329.17 4329.10 4327.47 4321.10 4298.66 4226.76 4302.93 
22 1 5 2 1 5 4 3 4322.32 4382.83 4401.24 4406.42 4407.68 4407.61 4406.08 4399.84 4377.71 4305.21 4381.69 
23 1 5 3 2 1 5 4 5076.31 5132.51 5149.38 5154.03 5155.18 5155.11 5153.70 5148.07 5127.65 5059.81 5131.18 
24 1 5 4 3 2 1 5 5020.80 5078.09 5094.73 5099.20 5100.26 5100.20 5098.88 5093.45 5073.17 5003.53 5076.23 
25 1 5 5 4 3 2 1 4967.99 5023.60 5041.97 5047.49 5048.92 5048.84 5047.13 5040.62 5018.97 4953.70 5023.92 
26 2 1 1 1 4 5 4 4176.25 4231.69 4251.33 4257.88 4259.80 4259.67 4257.28 4249.38 4225.87 4159.72 4232.89 
27 2 1 2 2 5 1 5 4263.49 4319.59 4338.82 4345.09 4346.86 4346.73 4344.52 4336.93 4313.71 4246.24 4320.20 
28 2 1 3 3 1 2 1 4952.89 4998.78 5017.31 5024.27 5026.48 5026.33 5023.65 5015.48 4993.92 4940.87 5002.00
29 2 1 4 4 2 3 2 4918.50 4967.16 4985.74 4992.40 4994.44 4994.30 4991.81 4983.91 4962.02 4905.04 4969.53 
30 2 1 5 5 3 4 3 4893.95 4944.48 4963.02 4969.41 4971.30 4971.17 4968.83 4961.19 4939.17 4879.36 4946.19 
31 2 2 1 2 1 3 3 4651.92 4705.25 4723.94 4730.07 4731.81 4731.70 4729.55 4722.22 4699.88 4636.51 4706.29 
32 2 2 2 3 2 4 4 4668.03 4722.52 4740.98 4746.89 4748.52 4748.41 4746.39 4739.27 4717.03 4651.72 4722.98 
33 2 2 3 4 3 5 5 4679.33 4734.67 4752.95 4758.65 4760.21 4760.11 4758.16 4751.25 4729.10 4662.31 4734.67 
34 2 2 4 5 4 1 1 4673.05 4724.87 4744.52 4751.41 4753.46 4753.34 4750.84 4742.74 4719.72 4659.36 4727.33 
35 2 2 5 1 5 2 2 4681.88 4734.99 4754.32 4760.87 4762.79 4762.66 4760.33 4752.53 4729.64 4667.13 4736.71 
36 2 3 1 3 3 1 2 4343.84 4400.66 4420.21 4426.44 4428.14 4428.04 4425.95 4418.55 4395.32 4328.02 4401.52 
37 2 3 2 4 4 2 3 4410.32 4467.85 4486.95 4492.83 4494.41 4494.32 4492.38 4485.32 4462.43 4393.69 4468.05 
38 2 3 3 5 5 3 4 4457.89 4515.92 4534.62 4540.23 4541.71 4541.62 4539.79 4533.01 4510.45 4440.53 4515.58 
39 2 3 4 1 1 4 5 5172.38 5225.81 5242.93 5248.09 5249.44 5249.36 5247.67 5241.41 5220.64 5155.94 5225.37 
40 2 3 5 2 2 5 1 5090.24 5140.73 5159.37 5165.69 5167.52 5167.42 5165.21 5157.76 5135.86 5076.86 5142.67 
41 2 4 1 4 5 4 1 4115.68 4174.65 4194.81 4201.14 4202.84 4202.75 4200.71 4193.25 4169.45 4100.15 4175.54 
42 2 4 2 5 1 5 2 4894.30 4949.11 4967.36 4972.90 4974.38 4974.30 4972.50 4965.90 4944.18 4879.08 4949.40 
43 2 4 3 1 2 1 3 4866.51 4922.41 4940.40 4945.74 4947.13 4947.06 4945.35 4938.94 4917.35 4850.34 4922.12 
44 2 4 4 2 3 2 4 4847.83 4904.60 4922.38 4927.52 4928.83 4928.76 4927.15 4920.93 4899.45 4830.89 4903.83 
45 2 4 5 3 4 3 5 4834.31 4891.74 4909.23 4914.19 4915.42 4915.36 4913.83 4907.79 4886.51 4816.71 4890.51 
46 2 5 1 5 2 2 5 4535.56 4595.13 4612.37 4617.02 4618.12 4618.06 4616.71 4611.07 4590.06 4517.43 4593.15 
47 2 5 2 1 3 3 1 4559.75 4617.21 4636.34 4642.15 4643.67 4643.60 4641.78 4634.93 4612.35 4544.60 4617.64 
48 2 5 3 2 4 4 2 4588.80 4647.17 4665.77 4671.23 4672.61 4672.55 4670.88 4664.39 4642.21 4572.65 4646.83 
49 2 5 4 3 5 5 3 4610.26 4669.25 4687.39 4692.53 4693.80 4693.73 4692.19 4686.02 4664.21 4593.30 4668.27 
50 2 5 5 4 1 1 4 5328.33 5383.24 5399.78 5404.37 5405.49 5405.44 5404.07 5398.53 5378.48 5311.97 5381.97 
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6.2 Modeling and prediction of current density for a SOFC 
stack

Therefore, the input arrays of the training data in the BPNN 
are obtained by the Taguchi’s orthogonal array L50(21×511),
whose columns of the array from 1 to 7 are applied. The direct 
solutions of temperature and current density for each layer of a 
SOFC stack obtained by the previous numerical method [15] 
serve as the learning data. Thus, a total of 50 training data for 
the learning of the network are completed as listed in Table 2. 

The goal of the training process of BPNN is to realize the 
mapping relations between the inputs and the outputs by the 
training data. For the inputs, seven factors, as listed in Table 1 
are considered. The only desired outputs in training data are the 
current densities for 10 layers in a SOFC stack which derive by 
the developed direct solution of Fortran program. Thus, the 
training data will be learned further to develop the model of the 
current density by the improved BPNN. 

By the analysis of mean (ANOM), the response table is also 
listed in Table 3, where the rank is determined based on the 
average current density of a SOFC stack. Fig.4 plots the 
response graph. The effects of all control factors are determined 
by the analysis of variance (ANOVA), where F-test are 
executed to assess if control factors are significant. Table 4 lists 
the ANOVA, where the F-ratios, the percentage contributions 
for each process variable were calculated. The ranks in Table 4 
were decided due to the value of F-ratios. 

The training procedures are finished as the error converges 
steadily. Thus, the implemented neural network algorithm is 
used to predict testing data.  Usually, the fact that the training 
procedures converges successfully can not always give the 
proof of excellent testing results.  Therefore, it is noted that 
both superior learning results and testing results clarify the 
efficiency of the obtained model. To assess the accuracy of the 
learned model at all factor and level, all seven factors with 
variable levels are designed for the testing data, as listed in 
Table 5. Thus, Taguchi’s orthogonal array L18(21x37) which 
columns from 1 to 7 are applied to design the testing data. 
Therefore, a total of 18 testing data for the learning of the 
network are adopted here.  

The Taguchi method for quality analysis is to achieve the 
evaluation of the optimal combination of working parameters. 
The optimal selected levels for every factor are decided 
according to their ranks. The obtained ranks of ANOVA in 
Table 4 are equal to those of the response table in Table 3.  The 
significance of all factors in order is , , N f , Na , 
respectively. 

2HX OHX
2

TABLE 3.
THE RESPONSE TABLE

A B C D E F G 
Level1 4744.86 4693.96 4420.05 4742.41 5053.37 4746.26 4732.86
Level2 4744.05 4726.82 4613.08 4744.17 4870.66 4741.44 4741.80
Level3 4750.85 4768.21 4742.97 4721.11 4741.70 4742.84
Level4 4768.27 4900.57 4746.79 4593.56 4745.20 4751.83
Level5 4782.38 5020.39 4745.94 4483.59 4747.68 4752.94
Effect 0.81 88.42 600.35 4.38 569.78 6.24 20.07
Rank 7 3 1 6 2 5 4

By the processes of try and errors, it is found that 7 neurons 
in first hidden layer and 7 neurons in second hidden layer are 
more efficient for both better learning results and testing results. 
Therefore, 7 7 7 10 network structure is utilized here to 
perform the learning scheme.  The learning results, including 
the array of factors and value of all levels, are listed in Table 5.  
Also, the testing results are listed in Table 6. 

 Compared with the direct solutions, the mean percent 
errors for the training results and the testing results are 0.117% 
and 0.231%, respectively. The small mean percent errors verify 
that the superior mapping relations between inputs and outputs 
can be realized by the improved BPNN with great satisfaction. 
Hence, the development of the model of the current density has 
been accomplished by the implemented neural network 
algorithm. 

Thus, the accuracy and effectiveness of the developed 
BPN algorithm are certified. The results also show that the 
capability of fast calculation is very significant for the 
presented mathematical algorithm model than the FORTRAN 
program.  Utilization of this developed BPNN model, as a set of 
inputs is given, its output result of current density can be 
obtained immediately even in real time, a result that affords a 
capability of dynamic control.  

Fig.4 The response graphs 

TABLE 4.
ANOVA

Factor SS DOF Var F Confidence Significance? Rank
A 8.2898 1 8.2898 Pooled 7
B 49073.5 4 12268.4 249.953 100.00% Yes 3
C 2235842 4 558960 11388.1 100.00% Yes 1
D 141.334 4 35.3336 Pooled 6
E 2027210 4 506802 10325.4 100.00% Yes 2
F 309.043 4 77.2608 Pooled 5
G 2703.65 4 675.911 13.7708 100.00% Yes 4

Others 1161.07 24 48.3778 Pooled
Error 1619.73 33 49.0828 
Total 4316449 49 At least 99% Confidence. 
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TABLE 5.
THE DESIGN OF TRAINING DATA FOR ALL FACTORS AND LEVELS BY L50(21×511) AND THEIR LEARNING RESULTS AT THE 7 7 7 10 NETWORK STRUCTURE

Exp. A B C D E F G *D 1 *D 2 *D 3 *D 4 *D 5 *D 6 *D 7 *D 8 *D 9 *D 10 Error%
1 1 1 1 1 1 1 1 4601.30  4657.23 4673.50 4680.75 4683.86 4681.74 4679.56 4674.50  4651.59  4584.93 0.092
2 1 1 2 2 2 2 2 4627.25  4682.45 4699.95 4706.53 4708.96 4708.10 4705.07 4700.10  4677.55  4610.77 0.061
3 1 1 3 3 3 3 3 4647.12  4701.80 4720.07 4726.16 4728.25 4728.33 4724.58 4719.70  4697.38  4630.58 0.073
4 1 1 4 4 4 4 4 4661.55  4715.86 4734.53 4740.32 4742.30 4743.04 4738.70 4733.92  4711.73  4644.97 0.088
5 1 1 5 5 5 5 5 4671.80  4725.84 4744.70 4750.29 4752.32 4753.52 4748.68 4744.02  4721.91  4655.19 0.082
6 1 2 1 2 3 4 5 4323.22  4381.06 4396.55 4403.78 4408.29 4407.52 4401.79 4399.76  4376.38  4305.78 0.170
7 1 2 2 3 4 5 1 4373.38  4429.06 4451.71 4456.77 4455.69 4457.79 4453.44 4448.82  4427.15  4355.46 0.195
8 1 2 3 4 5 1 2 4431.25  4486.46 4509.40 4514.38 4513.26 4515.14 4511.85 4505.55  4483.94  4413.76 0.082
9 1 2 4 5 1 2 3 5136.31  5189.26 5207.16 5212.04 5213.29 5213.40 5211.56 5205.21  5184.59  5119.94 0.032
10 1 2 5 1 2 3 4 5073.48  5126.19 5143.04 5148.33 5150.83 5151.57 5147.39 5142.97  5122.00  5056.85 0.067
11 1 3 1 3 5 2 4 4111.19  4169.98 4188.43 4194.32 4197.07 4199.18 4191.01 4190.45  4167.74  4092.31 0.054
12 1 3 2 4 1 3 5 4870.10  4925.24 4939.55 4946.86 4951.18 4947.62 4947.54 4940.28  4917.64  4854.64 0.226
13 1 3 3 5 2 4 1 4828.94  4883.27 4900.41 4906.79 4909.37 4907.76 4906.67 4899.43  4877.29  4813.08 0.248
14 1 3 4 1 3 5 2 4810.13  4864.00 4881.78 4887.66 4890.21 4889.78 4887.14 4880.68  4858.75  4794.04 0.338
15 1 3 5 2 4 1 3 4802.47  4856.14 4873.91 4879.80 4882.60 4882.71 4879.31 4873.15  4851.20  4786.26 0.306
16 1 4 1 4 2 5 3 4512.21  4571.08 4582.15 4591.08 4598.60 4592.11 4593.45 4584.93  4560.31  4497.39 0.130
17 1 4 2 5 3 1 4 4548.54  4605.92 4619.83 4627.83 4633.34 4629.14 4629.10 4621.16  4597.35  4533.11 0.238
18 1 4 3 1 4 2 5 4586.10  4642.15 4659.66 4666.14 4669.30 4667.01 4666.94 4657.66  4634.88  4570.49 0.041
19 1 4 4 2 5 3 1 4592.67  4647.59 4669.24 4674.36 4674.50 4674.16 4674.36 4663.88  4642.07  4576.69 0.038
20 1 4 5 3 1 4 2 5292.90  5345.67 5364.92 5368.19 5368.44 5369.50 5368.51 5360.45  5340.90  5276.49 0.224
21 1 5 1 5 4 3 2 4246.22  4307.37 4318.96 4327.44 4335.29 4329.64 4329.98 4321.60  4296.64  4230.81 0.062
22 1 5 2 1 5 4 3 4317.96  4376.02 4396.02 4401.87 4403.30 4401.57 4402.23 4392.00  4369.32  4301.64 0.125
23 1 5 3 2 1 5 4 5077.48  5131.41 5148.27 5153.81 5156.15 5153.82 5154.95 5145.52  5124.34  5061.96 0.030
24 1 5 4 3 2 1 5 5024.09  5077.58 5094.48 5100.25 5102.77 5101.64 5100.55 5093.09  5071.73  5008.14 0.034
25 1 5 5 4 3 2 1 4969.58  5022.64 5040.62 5046.21 5048.35 5048.22 5046.06 5039.02  5017.73  4953.38 0.021
26 2 1 1 1 4 5 4 4171.31  4227.39 4252.98 4256.91 4253.58 4259.23 4250.51 4250.41  4229.57  4151.30 0.091
27 2 1 2 2 5 1 5 4258.26  4313.63 4339.16 4343.25 4340.08 4345.07 4337.81 4335.75  4314.88  4238.89 0.089
28 2 1 3 3 1 2 1 4943.44  4996.87 5015.38 5020.99 5022.14 5021.46 5020.19 5013.35  4992.00  4927.28 0.094
29 2 1 4 4 2 3 2 4914.46  4967.73 4985.54 4991.28 4993.26 4993.36 4990.16 4984.88  4963.33  4898.09 0.038
30 2 1 5 5 3 4 3 4890.68  4943.85 4960.93 4966.81 4969.61 4970.31 4965.45 4961.54  4939.78  4874.13 0.042
31 2 2 1 2 1 3 3 4640.80  4697.31 4712.64 4720.18 4724.00 4720.01 4720.57 4712.76  4689.58  4625.26 0.212
32 2 2 2 3 2 4 4 4661.35  4716.91 4733.88 4740.62 4743.48 4741.25 4740.36 4733.17  4710.48  4645.48 0.133
33 2 2 3 4 3 5 5 4676.68  4731.55 4749.51 4755.69 4758.06 4757.17 4755.00 4748.43  4726.05  4660.57 0.059
34 2 2 4 5 4 1 1 4669.39  4723.64 4744.75 4750.05 4750.18 4750.45 4749.25 4740.82  4719.04  4653.19 0.049
35 2 2 5 1 5 2 2 4673.27  4727.23 4748.56 4753.49 4753.69 4754.59 4752.45 4744.57  4722.95  4656.97 0.168
36 2 3 1 3 3 1 2 4332.84  4391.45 4408.27 4415.37 4418.75 4415.96 4415.47 4407.83  4384.36  4316.54 0.246
37 2 3 2 4 4 2 3 4398.73  4455.65 4475.59 4481.62 4482.75 4481.84 4480.87 4472.83  4450.28  4382.10 0.265
38 2 3 3 5 5 3 4 4452.35  4508.09 4530.10 4535.36 4535.06 4535.39 4534.21 4525.66  4503.74  4435.59 0.133
39 2 3 4 1 1 4 5 5166.59  5219.52 5237.97 5242.39 5243.45 5243.31 5242.49 5234.64  5214.36  5150.37 0.112
40 2 3 5 2 2 5 1 5093.00  5145.59 5164.14 5168.93 5170.24 5170.71 5168.41 5161.78  5141.25  5076.53 0.067
41 2 4 1 4 5 4 1 4107.98  4167.03 4189.19 4194.07 4193.78 4195.15 4191.92 4185.82  4163.64  4089.86 0.184
42 2 4 2 5 1 5 2 4885.53  4940.64 4957.20 4963.90 4966.55 4962.47 4965.35 4954.68  4932.48  4870.48 0.191
43 2 4 3 1 2 1 3 4861.71  4916.18 4934.04 4940.16 4942.33 4939.74 4941.17 4930.99  4909.07  4846.34 0.121
44 2 4 4 2 3 2 4 4846.06  4900.03 4917.99 4923.91 4926.33 4925.07 4924.28 4915.79  4893.96  4830.29 0.070
45 2 4 5 3 4 3 5 4832.84  4886.46 4904.23 4910.08 4912.92 4912.63 4909.99 4902.97  4881.14  4816.77 0.072
46 2 5 1 5 2 2 5 4540.58  4600.39 4609.80 4619.48 4628.15 4619.20 4623.76 4612.26  4587.05  4526.74 0.103
47 2 5 2 1 3 3 1 4559.92  4617.29 4635.48 4642.10 4644.46 4639.54 4644.76 4630.46  4607.44  4545.36 0.041
48 2 5 3 2 4 4 2 4590.80  4646.89 4667.07 4672.85 4673.96 4671.07 4674.50 4661.23  4638.89  4575.69 0.046
49 2 5 4 3 5 5 3 4614.45  4669.64 4690.87 4696.12 4696.67 4695.27 4697.05 4684.88  4662.96  4598.93 0.062
50 2 5 5 4 1 1 4 5322.94  5375.82 5395.92 5398.80 5398.34 5399.31 5399.50 5390.15  5370.84  5306.66 0.114

*: BPN network output results           Ave: 0.117%          
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TABLE 6.
THE DESIGN OF TESTING DATA FOR ALL FACTORS AND LEVELS BY L18(21x37) AND THEIR TESTING RESULTS

Ia1 Ia2 Ia3 Ia4 Ia5 Ia6 Ia7 Ia8 Ia9 Ia10
Exp. dstack N f 2HX

2COX OHX
2

COX Na *D 1 *D 2 *D 3 *D 4 *D 5 *D 6 *D 7 *D 8 *D 9 *D 10
Error%

4602.28 4650.64 4669.90 4677.02 4679.25 4679.10 4676.38 4668.03 4645.64 4589.95 0.0841 1 0.06 0.24 0.03 0.03 0.2 0.12 
4601.26 4656.81 4672.31 4679.02 4683.65 4681.34 4679.44 4674.48 4650.65 4583.67
4645.11 4697.39 4716.29 4722.71 4724.62 4724.49 4722.13 4714.44 4691.98 4630.25 0.9182 1 0.09 0.36 0.05 0.05 0.28 0.18 4687.42 4742.35 4758.78 4764.74 4769.14 4767.46 4766.32 4758.98 4735.42 4670.36
4668.24 4722.50 4740.96 4746.92 4748.61 4748.49 4746.36 4739.12 4716.84 4651.68 1.3373 1 0.12 0.48 0.07 0.07 0.36 0.24 4731.71 4785.94 4802.94 4808.41 4812.95 4812.26 4810.39 4802.47 4779.23 4714.63
4301.11 4356.67 4375.55 4381.67 4383.41 4383.29 4381.10 4373.68 4350.87 4284.15 0.0604 1 0.06 0.24 0.05 0.05 0.36 0.24 4302.70 4358.88 4375.27 4381.41 4386.24 4387.19 4379.00 4380.13 4356.50 4283.10
4448.43 4504.36 4524.24 4530.76 4532.59 4532.49 4530.27 4522.59 4499.22 4434.00 0.1075 1 0.09 0.36 0.07 0.07 0.2 0.12 4444.49 4499.67 4521.03 4525.80 4526.88 4527.19 4525.93 4518.06 4495.21 4426.43
5325.70 5380.08 5396.91 5401.71 5402.92 5402.85 5401.38 5395.60 5375.39 5310.30 0.2086 1 0.12 0.48 0.03 0.03 0.28 0.18 5315.54 5368.50 5387.51 5389.78 5391.11 5392.78 5392.26 5383.13 5362.98 5297.61
4420.08 4475.54 4494.43 4500.56 4502.28 4502.16 4499.97 4492.54 4469.74 4403.20 0.1947 1 0.06 0.36 0.03 0.07 0.28 0.24 4428.31 4482.42 4505.46 4509.50 4509.09 4512.02 4507.09 4503.20 4481.00 4409.10
5277.11 5326.48 5344.55 5350.62 5352.36 5352.26 5350.16 5343.00 5321.82 5264.37 0.2538 1 0.09 0.48 0.05 0.03 0.36 0.12 5262.29 5315.06 5333.50 5336.37 5338.10 5339.80 5338.14 5330.58 5310.05 5244.23
4376.72 4436.94 4455.03 4460.02 4461.24 4461.18 4459.69 4453.69 4431.97 4359.73 0.0799 1 0.12 0.24 0.07 0.05 0.2 0.18 4377.49 4437.52 4446.13 4455.11 4465.90 4457.87 4460.13 4451.17 4424.92 4361.73
4885.04 4932.17 4951.14 4958.23 4960.46 4960.31 4957.58 4949.28 4927.18 4872.70 0.05910 1.5 0.06 0.48 0.07 0.05 0.28 0.12 4882.76 4935.88 4953.00 4958.16 4961.69 4962.65 4958.45 4953.91 4931.24 4864.95
4109.14 4168.03 4187.65 4193.75 4195.40 4195.30 4193.26 4185.94 4162.43 4092.12 0.49011 1.5 0.09 0.24 0.03 0.07 0.36 0.18 4088.91 4145.41 4170.87 4173.89 4172.08 4175.97 4170.53 4167.34 4145.66 4068.36
5078.23 5134.78 5151.36 5155.86 5156.94 5156.88 5155.55 5150.09 5129.89 5060.97 0.04812 1.5 0.12 0.36 0.05 0.03 0.2 0.24 5077.43 5131.33 5148.45 5153.25 5156.13 5154.14 5156.19 5145.77 5123.83 5060.50
4961.83 5011.26 5029.42 5035.68 5037.55 5037.43 5035.11 5027.63 5006.05 4947.58 0.06713 1.5 0.06 0.36 0.07 0.03 0.36 0.18 4956.31 5009.77 5026.51 5031.74 5035.00 5034.57 5032.52 5026.67 5004.25 4938.71
4950.15 5005.48 5023.09 5028.34 5029.72 5029.63 5027.92 5021.53 5000.14 4933.11 0.04714 1.5 0.09 0.48 0.03 0.05 0.2 0.24 4949.37 5002.41 5019.13 5024.22 5028.14 5028.60 5025.30 5019.53 4997.14 4931.66
4126.15 4186.38 4206.12 4212.01 4213.56 4213.49 4211.62 4204.68 4181.38 4110.36 0.02815 1.5 0.12 0.24 0.05 0.07 0.28 0.12 4128.56 4188.05 4206.77 4212.00 4215.60 4212.89 4214.13 4204.40 4180.52 4110.88
4662.06 4714.42 4733.51 4740.08 4742.03 4741.90 4739.48 4731.65 4708.93 4646.97 0.06116 1.5 0.06 0.48 0.05 0.07 0.2 0.18 4663.81 4717.58 4737.79 4742.33 4744.08 4745.31 4742.48 4735.81 4713.02 4646.15
4686.80 4743.01 4760.78 4766.01 4767.38 4767.29 4765.60 4759.25 4737.66 4669.51 0.07417 1.5 0.09 0.24 0.07 0.03 0.28 0.24 4684.45 4741.30 4753.06 4761.05 4768.38 4762.39 4764.37 4755.91 4731.21 4668.24
4716.73 4773.20 4792.09 4797.87 4799.41 4799.34 4797.50 4790.67 4768.37 4701.83 0.05118 1.5 0.12 0.36 0.03 0.05 0.36 0.12 4720.82 4775.93 4794.59 4799.90 4802.70 4799.71 4803.06 4790.53 4767.42 4704.56

   *: BPN network output results Ave: 0.231%

6.3 Optimization of performance for a SOFC stack 
As section mentioned above, the model of the average current 

density for each layer in a SOFC stack is developed by the 
improved BPNN. Thus, its calculating algorithms are applied to 
proceed with the optimization of the performance for a SOFC 
stack.  The optimized procedures are finished as the objective 
function F, i.e. performance function converges to maximum or 
minimum. The results show that the Maximum F and the 
minimum F converge steadily to Fmax =53907.89 and Fmin

=41137.11, respectively, no matter what random initial 
operating parameters, converging rate *, 0.01 *  0.3, and 
momentum factor *, 0.2 *  0.8, are selected.  As illustrated 
in Fig.5, when the iteration T increases, the optimized 
processes are expected to converge steadily and quickly. Thus, 
operating performance window of a SOFC stack, Fmin F
Fmax, is between 41137.11 and 53907.89. 

As showed in Table 4, the significance factors 
are , , N f , Na , respectively, whose responses all 

reveal linear relationship approximately. Therefore, in the 
consideration of the significance factors, it is reasonable that 

both the optimal operating parameters for the best performance, 
B5 C5 E1 G5, and the worst operating parameters for the worst 
performance, B1 C1 E5 G1, fall at boundary levers, as case 2 and 
4 listed in Table 7. The optimal levels by the Taguchi method 
have the same selection of operating parameters for the 
significance factors, whose levels of the best performance are 
A1 B5 C5 D4 E1 F5 G5 and levels of the worst performance are A2

B1 C1 D1 E5 F2 G1, as case 1 and 3 listed in Table 7. The 
prediction of the best performance as well as the worst 
performance shows that the optimized method of the 
application of BPNN has better optimal results than Taguchi 
method. 

2HX OHX
2

Compared with the direct solution by FORTRAN program, 
all errors for the prediction of the performance of all cases 
listed in Table 7 are satisfactorily small. Hence, the calculating 
algorithms developed by the improved BPNN are proved to 
effectively obtain the optimized operating parameters.  
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Fig.5 The converging process of optimization 

6.4 Inverse prediction of operating parameters 
The operating performance window of a SOFC stack studied 

here is 41137.11 F  53907.89, as section mentioned above. 
Taking 5 desired performances as examples, the objective 
function converges steadily to the desired performance output 
Q in the optimized processes when the iteration T increases, as 
illustrated in Fig.6. 

Compared with the direct solution by FORTRAN program, 
all errors for the prediction of the desired performance of all 
cases listed in Table 8 are satisfactorily small. Hence, the 
inverse prediction of operating parameters developed by the 
calculating algorithms of the improved BPNN shows great 
effectiveness in achieving a desired performance of a SOFC 
stack.

Instead of the direct solving procedure, the inverse 
calculating algorithm developed by the improved BPNN can 
provide a quick prediction of operating parameters to achieve a 
desired performance of a SOFC stack so as to complete 

dynamic control of the operating parameters,, such as the mole 
fraction of species and molar flow rate in inlet which are 
considered to be changeable. 

It is noted that a desired performance usually has multi sets of 
solutions as the calculating algorithms of inverse prediction of 
operating parameters proceed. It is better to fix the levels for 
those operating parameters are insignificant factors, and then 
unite solution can be achieved by the adjustment of one 
significant operating parameter with fixed levels of the other 
significant factors. They are our future works. 

40000.00

42500.00

45000.00

47500.00

50000.00

52500.00

55000.00

0 20 40 60 80 100
Fig.6 The converging process of inverse prediction of operating 

parameters for desired performances of a SOFC stack 

TABLE 7.
PREDICTIONS OF MAXIMUM AND MINIMUM PERFORMANCE FOR A SOFC STACK.

Ia1 Ia2 Ia3 Ia4 Ia5 Ia6 Ia7 Ia8 Ia9 Ia10 F No. dstack N f 2HX
2COX OHX

2 COX Na *D 1 *D 2 *D 3 *D 4 *D 5 *D 6 *D 7 *D 8 *D 9 *D 10 *F
Error%

5330.56 5385.83 5402.00 5406.39 5407.44 5407.39 5406.08 5400.74 5381.05 5313.86 53841.331 1 0.12 0.48 0.06 0.03 0.36 0.24 
5327.83 5380.94 5399.45 5401.72 5403.29 5405.04 5404.17 5395.55 5375.33 5309.89 53803.21

0.071

5329.47 5384.39 5400.77 5405.29 5406.39 5406.33 5404.97 5399.48 5379.54 5312.64 53829.272 1.5 0.12 0.48 0.03 0.03 0.36 0.24 5338.16 5391.17 5410.70 5412.57 5413.60 5415.25 5415.36 5405.34 5385.46 5320.29 53907.89 0.146

4059.61 4112.15 4133.06 4140.81 4143.25 4143.09 4140.11 4131.02 4106.66 4045.84 41155.593 1.5 0.06 0.24 0.03 0.07 0.24 0.12 4057.58 4112.33 4141.80 4143.52 4138.52 4146.46 4136.89 4137.72 4117.33 4035.24 41167.38 0.129

4059.48 4111.94 4132.86 4140.62 4143.06 4142.90 4139.93 4130.82 4106.45 4045.74 41153.84 1.5 0.06 0.24 0.0397 0.07 0.36 0.12 4054.50 4109.03 4139.22 4140.71 4135.09 4143.53 4133.63 4134.81 4114.63 4031.965 41137.11 0.135

*: BPNN output results 
TABLE 8.

THE INVERSE PREDICTION OF OPERATING PARAMETERS TO ACHIEVE A DESIRED PERFORMANCE OF A SOFC STACK FOR 5 EXAMPLES

Ia1 Ia2 Ia3 Ia4 Ia5 Ia6 Ia7 Ia8 Ia9 Ia10 F No. dstack N f 2HX
2COX OHX

2 COX Na *D 1 *D 2 *D 3 *D 4 *D 5 *D 6 *D 7 *D 8 *D 9 *D 10 *F 
Error%

5176.78 5230.69 5247.71 5252.75 5254.07 5253.99 5252.35 5246.25 5225.72 5160.90 52301.211 1.2236 0.0983 0.4798 0.0491 0.0358 0.3089 0.2184 
5197.47 5250.23 5267.86 5271.45 5273.95 5275.23 5273.07 5266.14 5245.12 5179.48 52500.00 

0.378

4938.45 4994.06 5011.40 5016.50 5017.82 5017.73 5016.08 5009.89 4988.88 4921.76 49932.572 1.0887 0.0928 0.4768 0.06 0.0501 0.2316 0.2392 4946.87 5000.06 5016.10 5021.45 5025.77 5026.12 5022.50 5017.29 4994.69 4929.17 50000.00 0.134

4694.24 4750.35 4768.94 4774.67 4776.21 4776.12 4774.23 4767.42 4745.38 4679.19 47506.753 1.0492 0.1016 0.4136 0.0462 0.0595 0.3026 0.1546 4695.19 4749.68 4767.76 4773.07 4776.51 4775.56 4774.78 4766.24 4743.05 4678.15 47500.00 0.014

4428.41 4481.80 4501.19 4507.85 4509.82 4509.68 4507.24 4499.31 4476.34 4413.55 44835.194 1.07 0.06 0.3697 0.0357 0.0699 0.2094 0.1725 4443.48 4497.55 4521.31 4525.18 4524.20 4526.93 4523.19 4517.88 4495.77 4424.51 45000.00 0.366

4199.68 4255.35 4275.00 4281.55 4283.45 4283.32 4280.95 4273.07 4249.59 4183.43 42565.395 1.0539 0.06 0.2793 0.0416 0.07 0.2952 0.198 4192.29 4246.80 4271.70 4275.07 4273.55 4279.40 4269.70 4271.04 4249.57 4170.89 42500.00 0.153

*: BPNN output results 
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VII. CONCLUSIONS

In this study, a model of average current densities for a 
SOFC stack is firstly established by the application of an 
improved back-propagation neural network. For the inputs of 
BPNN, the conditions of operating parameters are arranged by 
Taguchi’s method with totally 7 factors.  For the outputs of 
BPNN, the average current densities are achieved by the direct 
solution of numerical method. The results show that the 
presented model can effectively predict the performance of a 
SOFC stack with extremely small predicting errors less than 
0.231%. According to the learning data, the analysis of 
variance reveals that the significance of all factors in order is 
molar fraction H2 in anode inlet, molar fraction H2O in anode 
inlet, mole flow rate in anode inlet, mole flow rate in cathode 
inlet, respectively. 

Secondly, the mathematical algorithms developed by the 
improved BPNN are utilized to carry out the optimization of 
the performance of a SOFC stack. The operating performance 
window of a SOFC stack is derived by the optimized 
maximum and minimum performance function, which is 
41137.11  F  53907.89.

Similar to the optimized process, an inverse predicting 
model of operating parameters of a SOFC stack is developed 
by suitably adjusting the same calculating algorithms of the 
improved BPNN, where the object function based on the 
desired performance is suitably revised.  The results show that, 
the inverse model can effectively predict operating parameters 
to obtain a desired performance output of a SOFC stack, 
whose scale is in the operating performance window. 

  Instead of the direct solving procedure by numerical 
method, all the calculating algorithms developed by the 
improved BPNN provide a series of interpretation on the 
applications of a SOFC stack: predict the performance of the 
average current density, evaluate the operating parameters of 
optimal performance and predict the conditions of operating 
parameters at a desired performance output. Combination of 
these calculating algorithms gives the possibility to complete 
dynamic control of the operating parameters, such as the mole 
fraction of species and molar flow rate in inlet which are 
considered to be changeable. 
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