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Abstract—The Globally Asynchronous Locally Synchronous 

Network on Chip (GALS NoC) is the most efficient solution that 
provides low latency transfers and power efficient System on Chip 
(SoC) interconnect. This study presents a GALS and generic NoC 
architecture based on a configurable router. This router integrates a 
sophisticated dynamic arbiter, the wormhole routing technique and 
can be configured in a manner that allows it to be used in many 
possible NoC topologies such as Mesh 2-D, Tree and Polygon 
architectures. This makes it possible to improve the quality of 
service (QoS) required by the proposed NoC. A comparative 
performances study of the proposed NoC architecture, Tore 
architecture and of the most used Mesh 2D architecture is 
performed. This study shows that Spidergon architecture is 
characterised by the lower latency and the later saturation. It is also 
shown that no matter what the number of used links is raised; the 
Links×Diameter product permitted by the Spidergon architecture 
remains always the lower. The only limitation of this architecture 
comes from it’s over cost in term of silicon area. 
 

Keywords—Dynamic arbiter, Generic router, Spidergon NoC, 
SoC. 

I.  INTRODUCTION 
INCE, data synchronization problems arise in multi-
clock domain SoC and operating clocked interconnects 

becomes increasingly more difficult, large NoC are treated 
as Globally Asynchronous Locally Synchronous (GALS) 
systems, calling for suitable interconnects beyond 
conventional synchronous buses. GALS paradigm not only 
avoids the problem of clock skew but also leads to lower 
power consumption. 

Communication between system modules is done by 
handshaking, where signals are exchanged on the control 
path in order to arrange the exchange of data. The packet 
router may use a bundled data that are controlled and 
transmitted asynchronously [1]. The shared bus solutions 
used for connecting the functional units by the commercial 
SoC [2-5] are not a suitable NoC interconnect since it can 
provide limited connectivity. The NoC are a better 
alternative than the classic architectures based on busses. 
Every node is the point of passage of several plots coming 
of different claimants. 

Several works has been focused on the synchronous NoC 
by using the 2-D mesh, tore, fat tree and hierarchical 
topologies [6-11]. The synchronous network suggested by 
Dally [12, 13] is based on a Tore 2D topology and uses the 
virtual channels technique to improve the necessary quality 
of services. The cut-trough and packet switching techniques 
have been used for the interconnect design. Other 
synchronous routers are discussed in [14]. A synchronous 5-
port router provides for two service levels (best effort and 
guaranteed throughput) has been presented in [15]. The  
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networks STNoC [16] and GeNoC [17] respectively 
developed by the STMicroelectronics Company and the 
TIMA Laboratory make the possibility of meeting the 
increasing requirements of the designs of current and future 
SoC. These NoC are based on flexible and evolutionary 
packets, designed according to a layers based methodology. 
These networks are respectively based on the Spidergon and 
the Octagon topologies and whose conceptual simplicity 
results in the best costs of silicon implementation of the 
routers and the networks interfaces. The notable advantage 
of STNoC compared to GeNoC is that it integrates adapters 
of interface making it possible to convert any protocol IP, 
OCP [18] or STBus out of communication packets. 

Only a few works have been focused on the design of 
asynchronous NoC. Synchronous routers using round-robin 
arbitration and supporting asynchronous interconnect are 
presented in [19, 20], though synchronization issues are 
ignored. The networks Proteo [21] and Chain [22] are two 
networks which support the Globally Asynchronous Locally 
Synchronous (GALS) formalisms and thus allow the power 
minimization. The major disadvantage of these architectures 
is that they are not generics since they integrate well defined 
and not flexible protocols and topologies. 

Separately the networks GeNoC, STNoC and SoCIN, the 
other networks presented are based on fixed data structures 
and do not adopt the generic concept. Thus, only these 
networks can be adapted with the change of the applicative 
aspect whose sizes of the handled data as well as the number 
of the input/output ports can beings variable. In order to 
develop networks whose dimensions of architectures are 
adaptable, by fixing the number and the sizes of the 
communication links according to the traffic of the 
application, a new architecture called Spidergon is proposed. 
This architecture use the 4-phase protocol for the 
communication between the routers and it can be 
interconnected to a series of architectures going from the 
tree structure to the simple ring. The generic router used by 
this architecture integrates a sophisticated dynamic arbiter, a 
Wormhole routing technique, the Aloha retransmission 
technique and allows the error cheeking according to the 
CRC technique. The sizes and the depths of the FIFO 
contained in this router, the number of input/output ports, 
the number and the time of retransmission and the maximum 
numbers of the requests sent to the arbiter are also generic. 
All these characteristics make the proposed NoC flexible 
and extensible according to the applicative aspect and thus 
improve the quality of service required by the application to 
be mapped on it. 

Section 2 presents the Spidergon architecture and its 
corresponding generic router. Section 3 presents some 
experiments that study the performances of the proposed 
architecture compared to other NoC with similar 
architectures. Finally, section 4 concludes the paper. 

 

S 
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II.  SPIDERGON NoC ARCHITECTURE 
The proposed Spidergon NoC architecture is constructed 

based on an elementary polygon network which is a 
combination of the star and the ring architectures (Fig. 1). 
This elementary network is formed by 4R+1 (R = 1, 2, etc.) 
routers including a central router that is connected with the 
4R peripherals routers via point to point links. The 
peripherals routers are connected to each other in the form 
of a ring. The elementary network is characterised by its 
valence (m = 4R) that represents the number of the 
peripherals routers. These routers necessitate 2m links to be 
connected to the central router. Each peripheral router is 
connected to 4 input/output ports and the central router is 
connected to m+1 input/output ports. 
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Fig. 1 Example of a Spidergon architecture of valence m = 8 

The Spidergon architecture is constructed from a set of 
elementary polygon networks (Fig. 1) that are organized as a 
two order matrixes. Such architecture is characterized by the 
valence m of their elementary networks. A Spidergon 
architecture with a valence m is constituted by 3m+1 routers 
that necessitate 7m point to point links to be connected with 
each other. 

This NoC contains 4 types of routers that have 9, 6, 5 and 
4 input/output ports. This diversity of router kinds 
necessitate a generic router in term of number of 
input/output ports as well as other parameters like channel 
width, depth of the FIFO, etc. 

A.  Generic Router 

The basic module of the proposed NoC is an 
asynchronous router with N generic input/output ports, 
having each a bi-directional exchange bus suitable for the 
proposed generic NoC architecture. All inter-module 
communications are carried out in messages witch are 
divided in packets. These packets are partitioned into small 
flits, which are sent through the NoC using the wormhole 
routing technique. The router implements many 

communication protocols such as flow control, Aloha 
retransmission, dynamic arbitration, CRC checking, etc. 

Each node of the network is identified by a single number 
which is used as source or destination addresses in the 
packet heading according to whether the router is transmitter 
or receiver. This architecture is constituted by 4 modules 
(port management unit (PMU), dynamic arbiter, routing 
table and the switch) that communicate with each other by 
using an asynchronous 4-phases protocol. 

1.  Packet fields 
To support varying communication requirements, three 

types of flits are considered in the proposed router: a header 
flit, body flit and a tail flit, indicating End-of-Packet (EOP). 
Each packet header (Fig. 2) carries information such as the 
nature of the flit Nat (control or data), related to data 
communication requirements. 

 
Fig. 2 The packet header fields 

The header contains also the quality identifier (QoS_id) 
of the service to be assured by the router, the address of the 
target router, the address of the source router, the priority of 
the packet, the number of the flits, and the CRC code. The 
priority field is composed of two bits. The “11” code is 
associated to the signaling packets such as urgent messages, 
short packets, interrupt and control signals that require low 
transport latency and represents the highest priority packets. 
The “10” code is associated to the real-time application 
packets. The “01” code is associated to the RD/RW packets 
such as short memory and register access. The “00” code is 
associated to the block transfer packets such as long 
messages and blocks of data that represents the lowest 
priority packets. 

A data flit is composed of 4 fields (Fig. 3). The data field 
contains the data to be transmitted. The Nbre field indicates 
the flit ordering number. The CRC field indicates the CRC 
checking code. 

The EOP flit is a particular data flit which carries the last 
data of the packet. The flits format presented in Fig. 3 is 
dimensioned in the case of 32 bits but in general it is generic. 

Data 

 

Fig. 3 Data flit fields 

2.  Port Management Unit (PMU) 
The port management unit (PMU) implements the routing 

mechanisms and the services which the router must offer to 
the communication. It integrates a routing function that 
calculates according to the information transported by the 
packet header, the address of the output port to which the flit 
will be transmitted. It also manages the data traffics through 
the port to which it is associated and performs the 
communication with the PMU units of the neighbour 
routers. The PMU units of each router operate concurrently 
witch minimizes the routing latency of the NoC by allowing 
the flits to arrive simultaneously by any input port. As 
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illustrated in Fig. 4 in the case of a router with 4 
input/output ports each PMU unit is composed by four 
modules: a flow control unit, a clock generator, a memory 
unit (FIFO), and a routing and services unit. 
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Fig. 4 The router and the PMU internal architectures 

 
The clock generator is intended to generate a stoppable 

clock signal to rhythm the PMU modules. When a given 
data transaction is initiated, the clock signal is activated. 
This signal is stopped only when all the flits contained in the 
FIFO are evacuated towards the routing and services unit. 

The flow control unit, implements the flow control 
mechanism that ensure that the received flits are well 
ordered and they are not duplicated. Such a mechanism 
allows to a router receiving a flit to indicate to its neighbour 
router, sender of this flit, if it has or not a sufficient memory 
to store this flit. If the receiver has a sufficient memory it 
stores the transmitted flit and sends an acknowledge signal 
to the sender. The detection of this signal by the sender 
allows it to liberate the buffer or to reload it to send a new 
flit if it has others about it. If a given deterioration occurs on 
the level of a flit or that the input FIFO of the receiver are 
full, this flit is rejected by the router and no acknowledge 
signal is sent to the sender. 

The flits integrity checking mechanism is based on flits 
counting and the CRC calculation. The flit counting 
mechanism uses the Nbre field of the header of the packet to 
be transmitted and allows the identification of EOP. The 
CRC checking uses an 8 degree polynomial code that is 
added as a suffix in each flit. The receiving router that has 
recomputed the CRC compares it with the suffix of the 
received flit. If the value of the recomputed CRC code is 
different from the transmitted one, the receiving router wait 
until this flit is transmitted again based on the Aloha 

retransmission technique ore reject it when the number of 
possible transmission is reached. 

The flit counting mechanism, the Aloha retransmission 
technique, the dynamic arbitration and the CRC cheeking 
are actually the unique QoS services that are implemented in 
the proposed router. Other QoS can be added and they are 
coded in the QoS_id field of the header. For example the 
CRC code is “0001”, etc. 

The role of the generic FIFO module is to store the 
transmitted packets. All the flits coming from the flow 
control unit are pipelined through the FIFO to the routing 
and service unit when they are transmitted.  
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Fig. 5 Flow chart of the retransmission Aloha protocol 

 
After receiving a given flit and if this flit is a header, the 

routing and service unit takes the necessary information to 
determine the direction towards the data will be sanded. 
Then it consults the arbitration unit which manages the 
access to the selected port. If the routing and service unit 
receives an acknowledge signal from the arbiter module it 
sends the header in the corresponding direction and all the 
flits will be sanded in the same direction. The requester that 
is granted by the arbiter switches the heading towards the 
given output port. This port remains reserved until all packet 
flits are carried out. If during the routing step, this output 
port is blocked, the router stores the received flits on the 
corresponding input port in order to send them later when 
the output port becomes free. Each requester not having 
access to the output port and whose request was rejected by 
the arbiter increments its internal counter and wait for a Td 
time. Once this time is over, the requester starts again the 
same request with the arbiter. When the counter reaches a 
maximum value Nmax, the routing and service unit 
determines other output port, and a new request cycle will 
begin. The Td time and the Nmax value are generics. 

The aim of the Aloha retransmission mechanism is to 
resolve the problem of loss or the reception delaying of the 
acknowledgment signals transmitted by the router. This 
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problem is fatal for the NoC since the transmitter can stop 
the transmitting, for lack of emission credit. The conflict 
which results from it can retro propagated until blocking the 
NoC completely. The advantage of the Aloha retransmission 
protocol lies in its simplicity. The flow chart of this protocol 
is given by Fig. 5 where Nmax represents the maximum 
number of retransmission and time-out indicates the 
maximum latency of the acknowledgement signals. 

3.  Dynamic arbiter 

In order to resolve access conflict to the output ports, a 
dynamic arbiter that allows the resolution of access conflict 
problems of each output port starting from the priority 
information of each incoming packet has been designed. 

 

ReqIN (5 bits) 
(P/F/A)*4ports 

Ack (5 bits) 

Comp_N 

C4 

Arb_N 

C4 
 

Comp_S 

C4 

Arb_S 

C4 
 

Comp_W 

C4 

Arb_W 

C4
 

Comp_E 

C4 

Arb_E 

C4 
 

Comp_L 

C4 

Arb_L 

C4

 

Grant_N 

 

Grant_S 

 

Grant_W 
 

Grant_E 
 

Grant_L 

 
(a) 

 

Comparator 

  Arbiter module 

 
(b) 

 
Fig. 6 Architecture of the dynamic arbiter 

 
This dynamic arbiter is constituted by a speed 

independent round-robin arbiter and a comparator module. 
Thus, a router with N input/output ports integrates N 
dynamic arbiters with N round-robin arbitration modules 
and N comparators as presented by Fig. 6.a in the case of a 
2D mesh NoC arbiter that contains 5 input/output ports 
(Local, East, West, North and South). Each dynamic arbiter 
serves the 4 demands that are addressed to every port. The 

requests effectively allocated by the different comparators 
are treated by the corresponding arbiter modules. 

Each dynamic arbiter is constituted by m comparators and 
m round robin arbitration modules interconnected by m C-
elements (m represents the number of requesters) and an OR 
gate as shown by Fig. 6.b in the case of an arbiter with 4 
requesters. After receiving the request signals from the 
requesters, the priority comparator stores the priority values 
from the priority busses of the active requests and compares 
them. After the comparison step, the comparator sends out a 
set of internal signals that correspond to the requesters that 
have the highest priorities. 

After being combined with 4 C-elements, the output 
signals are transmitted to the arbiter module. Thus, only the 
requesters that have requested the access and that have been 
selected by the comparator module will be treated by the 
arbiter. If there is only one requester that has been selected 
by the comparator it will be granted the access automatically 
by the arbiter and the priority list is shifted in a circular way. 
If there is two or three requesters that have the same 
priorities orders, then the requester that has the last highest 
priority order will gained the access and the priority list is 
shifted in a circular way. The outputs of the C-elements that 
enter to the arbiter module will be activated only if the 
requesters have requested the access and they are selected 
by the comparator. If a requester has gained the access the 
comparator module will deactivate the generated internal 
signals. This scheme is implemented by an enable (En) 
signal that is generated by an OR gate with 4 inputs (Grant 
signals). The outputs of the C-elements that enter to the 
arbiter still high until the active requests become low. Also 
the comparator will be activated again only if the enable 
signal becomes active (the actual requester has released the 
bus). 

4.  Routing table and switch 

After the arbitration phase, the arbiter sends a request to a 
table which checks the state of the concerned output ports 
and acknowledges the arbiter if one of these ports is free. 
The state of each output port (free or occupied) is 
memorized in a register. 

The switch allows commutating the flits coming from the 
PMU units towards the wearing of selected destinations. 
Each PMU communicates with the switch thanks to two 
signals UX and ADRX. UX is the port with 32 bits which 
conveys the flits coming from the PMU unit X and ADRX is 
the address coded on 3 bits chosen by the PMU unit. 
Address ADRX is communicated by the PMU unit X with 
the switch to choose the address of the output port through 
which the flit must be transferred. This address also makes it 
possible to the switch to acknowledge the external core 
towards which the flit is intended. 

B.  Generic Parameters of the Spidergon NoC 
The proposed Spidergon NoC is a flexible, easily 

extensible network and offers a variety of services to the 
communication owning to the fact that it is completely 
generic. It makes the possibility of choosing and modifying 
parameters such as the width of interconnection, the depth 
of the FIFO, the sizes of the fields of the flits, the maximum 
number of retransmission of a flit and a request of the arbiter 



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:7, 2007

1036

and the propagation times of the signals which prove very 
important for the correct operation of the total system. 
Moreover, it is generic in terms of supported number of 
cores. The development of this network is based on a library 
of generic models of VHDL blocks. The files of this library 
contain protocol (number of retransmissions, allowed 
requests, time out, degrees of adaptability and size of each 
field forming the various types of flits) and physic (width 
and depth of the FIFO, number of input/output of the routers 
and the valence m of the network) parameters. 

These files also contain all the functions used by the 
VHDL blocks like the path calculation function, the CRC 
checking function, etc. The generation of the Spidergon 
architecture is done automatically by indicating the valence 
m in the package file by using the VHDL GENERATE 
clause. The portion of the VHDL code of Fig. 7 shows how 
to generate the peripheral routers in an elementary Polygon 
network of valence m. 

  Generate: For i in 1 to m generate 
  Perif_Router: Router generic map(width,i) 
           port map(R0=>Request_in(i), 
    Data_in0 =>   Input((i+1)*width-1 downto i*width), 
    -- 
           …); 
  End generate; 

Fig. 7 Clause GENERATE for generating peripheral routers of the 
elementary polygon network 

C. Routing Function 

The Spidergon network has a strategy of distributed 
routing. Each router is independent to the others routers and 
makes the decisions of switching and memorizing of the flits 
in each input port without the intervention of a central 
synchronization. Switching is carried out thanks to an 
adaptive routing function which uses the heading data of the 
packet, in particular the destination address, to calculate the 
output port of the flit. The routing function depends on the 
position of the router in the network as of the number of the 
input/output ports that it contains. The central router 
intervenes if there is congestion. 

For routing a packet received on an input port i of a given 
router, the routing unit of this port decodes the packet 
heading and extracts the address of the destination module 
to be reached by the packet. Then it calculates the number of 
the output port to be used by the flits by using the router and 
the target core addresses as parameters. 

III.  EXPERIMENTS 
The performances of the proposed NoC are studied and 

compared with two other NoC with similar architectures 
(Mesh and Tore). 

A parameterised network model was constructed using 
HASE (Hierarchical Architectural Simulation Environment) 
[23]. The underlying simulation system is multi-threaded 
and even-driven. Each tile or node generates packets with 
random destinations. Packets are generated at a constant rate 
and queued until they are able to enter the network. The 
interval between the creation of individual packets is 
random (geometric distribution) to prevent packets being 
injected into the network synchronously. Network latency is 

measured from the time the first flit is created to the time the 
last flit in the packet is received at its destination, including 
any time spent buffered at the source node. Each node 
injects 1000 packets into the network and performance 
statistics are gathered after an initial warm-up period of 100 
packets/node. Packets are 64 flits in length. 

 
Fig. 8 Latency versus load for two Spidergon architectures 

Fig. 8 shows the evolution of average latency according 
to the load for two sizes of the Spidergon architecture. The 
Spidergon architecture of valence m=12 contains 37 routers 
and the Spiergon architecture of valence m=20 contains 61 
routers. It can be seen that the latency increases with the size 
of the network. Indeed, for weak loads the average way 
borrowed by the packets increases with the number of router. 
Moreover, the network saturates more quickly. A Spidergon 
network of valence m=20 saturates starting from a load 
equivalent to 40% whereas a Spidergon network of valence 
m=12 saturates with a load equivalent to 60%. Indeed, a 
larger network emits more packets. It proposes also more 
buffers for stoking these packets in the event of conflicts. 
But in an important network the ways are requested by more 
packets simultaneously thus a conflict affects more packets 
and saturation intervenes earlier. 

 
Fig. 9 Latency versus load for three architectures (Spidergon, Mesh 

and Tore) 
 

The Fig. 9 shows the evolution of average latency 
according to the load for architecture Spidergon of valence 
m=12 (37 routers) and two other similar architectures Mesh 
2D and Tore with 32 routers (8x4). The Spidergon 
architecture is characterized by a lower latency than the two 
others architectures. This difference is increasingly large 
after saturation. Also the network Spidergon saturates later 
than the two others architectures. Indeed, the packets cross 
less routers number in the Spidergon network than in the 
network Mesh 2D and Tore. In fact it is noticed that no 
matter what the number of the used links is high the 
Links×Diameter (L×D) product of the Spidergon NoC 
remains always lower than that of the Tore and the Mesh 2D 
networks (Fig. 10). 
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Fig. 10 Comparative study of the proposed NoC with Mesh 2D and 

Tore architectures in terms of Links×Diameter parameter 

Fig. 11 shows the evolution on the area of the networks 
Mesh 2D, Tore and Spidergon according to the number of 
router in technology CMOS 0.35 µm for buffers of 6 words. 
The more important the network is, the more the differences 
between areas of the three networks are large. This is due to 
the central routers of the Spidergon network which have 
(m+1) buffers, whereas in a Tore architecture all the routers 
have 5 buffers and in the Mesh network the peripheral 
routers have only 3 or 4 buffers. 

These results show that the proposed Spidergon 
architecture is powerful in term of latency comparatively to 
the other two architectures. Its limitation comes from it’s 
over cost on the area particularly for an important network. 

 
Fig. 11 Area of the NoC versus number of routers in the case of the 

Tore, Mesh and Spidergon architectures 

IV.  CONCLUSION 

This paper presents a flexible and easily extensible 
asynchronous NoC architecture that offer a variety of SoC 
communication services owing to the fact that it is 
completely generic. The router that is integrated in this 
architecture and that is based on a dynamic routing function 
allows to modify and to choose starting from a 
parameterized library different protocol and physic 
parameters. The protocol parameters consists on the Aloha 
retransmission time-out, the requests and their 
retransmission numbers, the adaptability degrees, the size of 
each field forming the various types of flits, etc. The 
physical parameters consist on the width and the depth of 
the FIFO, the number of the input/output ports, the valence 
m of the NoC, etc. 

Compared with other NoC with similar architectures, the 
value added by the Spidergon architecture, resides in its 
capacity to handle a suitable cost/performance compromise 
in the field of NoC. This thanks to its wide generic character 
and its constant and low diameter. It was shown that the 
Spidergon architecture is characterised by the lower latency 
and the later saturation. It is also shown that no matter what 

the number of used links is raised; the Links×Diameter 
product permitted by the Spidergon architecture remains 
always the lower. The only limitation of this architecture 
comes from it’s over cost in term of silicon area. 

In order to allow the use of the Spidergon architecture at 
various levels of abstraction we are under modelling it in 
SystemC language at TLM (Transaction Level Modelling) 
that is suggested by OCP-IP (Open Protocol-International 
Core Partnership). Moreover we are also under modelling 
powerful adapters of protocols and/or levels which allow a 
fast and accurate communication. Indeed routing of the data 
with the IP which treat them remainder in the systems on 
chip a source of congestion. 
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