
International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:7, 2007

1032

A Generic and Extensible Spidergon NoC
Abdelkrim Zitouni, Mounir Zid, Sami Badrouchi, and Rached Tourki

Abstract—The Globally Asynchronous Locally Synchronous

Network on Chip (GALS NoC) is the most efficient solution that
provides low latency transfers and power efficient System on Chip
(SoC) interconnect. This study presents a GALS and generic NoC
architecture based on a configurable router. This router integrates a
sophisticated dynamic arbiter, the wormhole routing technique and
can be configured in a manner that allows it to be used in many
possible NoC topologies such as Mesh 2-D, Tree and Polygon
architectures. This makes it possible to improve the quality of
service (QoS) required by the proposed NoC. A comparative
performances study of the proposed NoC architecture, Tore
architecture and of the most used Mesh 2D architecture is
performed. This study shows that Spidergon architecture is
characterised by the lower latency and the later saturation. It is also
shown that no matter what the number of used links is raised; the
Links×Diameter product permitted by the Spidergon architecture
remains always the lower. The only limitation of this architecture
comes from it’s over cost in term of silicon area.

Keywords—Dynamic arbiter, Generic router, Spidergon NoC,
SoC.

I. INTRODUCTION
INCE, data synchronization problems arise in multi-
clock domain SoC and operating clocked interconnects

becomes increasingly more difficult, large NoC are treated
as Globally Asynchronous Locally Synchronous (GALS)
systems, calling for suitable interconnects beyond
conventional synchronous buses. GALS paradigm not only
avoids the problem of clock skew but also leads to lower
power consumption.

Communication between system modules is done by
handshaking, where signals are exchanged on the control
path in order to arrange the exchange of data. The packet
router may use a bundled data that are controlled and
transmitted asynchronously [1]. The shared bus solutions
used for connecting the functional units by the commercial
SoC [2-5] are not a suitable NoC interconnect since it can
provide limited connectivity. The NoC are a better
alternative than the classic architectures based on busses.
Every node is the point of passage of several plots coming
of different claimants.

Several works has been focused on the synchronous NoC
by using the 2-D mesh, tore, fat tree and hierarchical
topologies [6-11]. The synchronous network suggested by
Dally [12, 13] is based on a Tore 2D topology and uses the
virtual channels technique to improve the necessary quality
of services. The cut-trough and packet switching techniques
have been used for the interconnect design. Other
synchronous routers are discussed in [14]. A synchronous 5-
port router provides for two service levels (best effort and
guaranteed throughput) has been presented in [15]. The

Authors are with Electronics and Micro-Electronics Laboratory (Lab-
IT06), Faculty of Sciences, Monastir, 5019, Tunisia.

networks STNoC [16] and GeNoC [17] respectively
developed by the STMicroelectronics Company and the
TIMA Laboratory make the possibility of meeting the
increasing requirements of the designs of current and future
SoC. These NoC are based on flexible and evolutionary
packets, designed according to a layers based methodology.
These networks are respectively based on the Spidergon and
the Octagon topologies and whose conceptual simplicity
results in the best costs of silicon implementation of the
routers and the networks interfaces. The notable advantage
of STNoC compared to GeNoC is that it integrates adapters
of interface making it possible to convert any protocol IP,
OCP [18] or STBus out of communication packets.

Only a few works have been focused on the design of
asynchronous NoC. Synchronous routers using round-robin
arbitration and supporting asynchronous interconnect are
presented in [19, 20], though synchronization issues are
ignored. The networks Proteo [21] and Chain [22] are two
networks which support the Globally Asynchronous Locally
Synchronous (GALS) formalisms and thus allow the power
minimization. The major disadvantage of these architectures
is that they are not generics since they integrate well defined
and not flexible protocols and topologies.

Separately the networks GeNoC, STNoC and SoCIN, the
other networks presented are based on fixed data structures
and do not adopt the generic concept. Thus, only these
networks can be adapted with the change of the applicative
aspect whose sizes of the handled data as well as the number
of the input/output ports can beings variable. In order to
develop networks whose dimensions of architectures are
adaptable, by fixing the number and the sizes of the
communication links according to the traffic of the
application, a new architecture called Spidergon is proposed.
This architecture use the 4-phase protocol for the
communication between the routers and it can be
interconnected to a series of architectures going from the
tree structure to the simple ring. The generic router used by
this architecture integrates a sophisticated dynamic arbiter, a
Wormhole routing technique, the Aloha retransmission
technique and allows the error cheeking according to the
CRC technique. The sizes and the depths of the FIFO
contained in this router, the number of input/output ports,
the number and the time of retransmission and the maximum
numbers of the requests sent to the arbiter are also generic.
All these characteristics make the proposed NoC flexible
and extensible according to the applicative aspect and thus
improve the quality of service required by the application to
be mapped on it.

Section 2 presents the Spidergon architecture and its
corresponding generic router. Section 3 presents some
experiments that study the performances of the proposed
architecture compared to other NoC with similar
architectures. Finally, section 4 concludes the paper.

S

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:7, 2007

1033

II. SPIDERGON NoC ARCHITECTURE
The proposed Spidergon NoC architecture is constructed

based on an elementary polygon network which is a
combination of the star and the ring architectures (Fig. 1).
This elementary network is formed by 4R+1 (R = 1, 2, etc.)
routers including a central router that is connected with the
4R peripherals routers via point to point links. The
peripherals routers are connected to each other in the form
of a ring. The elementary network is characterised by its
valence (m = 4R) that represents the number of the
peripherals routers. These routers necessitate 2m links to be
connected to the central router. Each peripheral router is
connected to 4 input/output ports and the central router is
connected to m+1 input/output ports.

R

R

R

R

R

R R

R

RR

R

R

R

R

R R

R

R

R

R

R

R

R

R R

R

RR

R

R

R

R

R R

R

R

Elementary polygon network

Fig. 1 Example of a Spidergon architecture of valence m = 8

The Spidergon architecture is constructed from a set of
elementary polygon networks (Fig. 1) that are organized as a
two order matrixes. Such architecture is characterized by the
valence m of their elementary networks. A Spidergon
architecture with a valence m is constituted by 3m+1 routers
that necessitate 7m point to point links to be connected with
each other.

This NoC contains 4 types of routers that have 9, 6, 5 and
4 input/output ports. This diversity of router kinds
necessitate a generic router in term of number of
input/output ports as well as other parameters like channel
width, depth of the FIFO, etc.

A. Generic Router

The basic module of the proposed NoC is an
asynchronous router with N generic input/output ports,
having each a bi-directional exchange bus suitable for the
proposed generic NoC architecture. All inter-module
communications are carried out in messages witch are
divided in packets. These packets are partitioned into small
flits, which are sent through the NoC using the wormhole
routing technique. The router implements many

communication protocols such as flow control, Aloha
retransmission, dynamic arbitration, CRC checking, etc.

Each node of the network is identified by a single number
which is used as source or destination addresses in the
packet heading according to whether the router is transmitter
or receiver. This architecture is constituted by 4 modules
(port management unit (PMU), dynamic arbiter, routing
table and the switch) that communicate with each other by
using an asynchronous 4-phases protocol.

1. Packet fields
To support varying communication requirements, three

types of flits are considered in the proposed router: a header
flit, body flit and a tail flit, indicating End-of-Packet (EOP).
Each packet header (Fig. 2) carries information such as the
nature of the flit Nat (control or data), related to data
communication requirements.

Fig. 2 The packet header fields

The header contains also the quality identifier (QoS_id)
of the service to be assured by the router, the address of the
target router, the address of the source router, the priority of
the packet, the number of the flits, and the CRC code. The
priority field is composed of two bits. The “11” code is
associated to the signaling packets such as urgent messages,
short packets, interrupt and control signals that require low
transport latency and represents the highest priority packets.
The “10” code is associated to the real-time application
packets. The “01” code is associated to the RD/RW packets
such as short memory and register access. The “00” code is
associated to the block transfer packets such as long
messages and blocks of data that represents the lowest
priority packets.

A data flit is composed of 4 fields (Fig. 3). The data field
contains the data to be transmitted. The Nbre field indicates
the flit ordering number. The CRC field indicates the CRC
checking code.

The EOP flit is a particular data flit which carries the last
data of the packet. The flits format presented in Fig. 3 is
dimensioned in the case of 32 bits but in general it is generic.

Data

Fig. 3 Data flit fields

2. Port Management Unit (PMU)
The port management unit (PMU) implements the routing

mechanisms and the services which the router must offer to
the communication. It integrates a routing function that
calculates according to the information transported by the
packet header, the address of the output port to which the flit
will be transmitted. It also manages the data traffics through
the port to which it is associated and performs the
communication with the PMU units of the neighbour
routers. The PMU units of each router operate concurrently
witch minimizes the routing latency of the NoC by allowing
the flits to arrive simultaneously by any input port. As

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:7, 2007

1034

illustrated in Fig. 4 in the case of a router with 4
input/output ports each PMU unit is composed by four
modules: a flow control unit, a clock generator, a memory
unit (FIFO), and a routing and services unit.

FIFO

Input flow
control unit

Routing &
services

unit

Abriter

Routing
Table

Switch

Switch

Clock
Geneator

Fig. 4 The router and the PMU internal architectures

The clock generator is intended to generate a stoppable

clock signal to rhythm the PMU modules. When a given
data transaction is initiated, the clock signal is activated.
This signal is stopped only when all the flits contained in the
FIFO are evacuated towards the routing and services unit.

The flow control unit, implements the flow control
mechanism that ensure that the received flits are well
ordered and they are not duplicated. Such a mechanism
allows to a router receiving a flit to indicate to its neighbour
router, sender of this flit, if it has or not a sufficient memory
to store this flit. If the receiver has a sufficient memory it
stores the transmitted flit and sends an acknowledge signal
to the sender. The detection of this signal by the sender
allows it to liberate the buffer or to reload it to send a new
flit if it has others about it. If a given deterioration occurs on
the level of a flit or that the input FIFO of the receiver are
full, this flit is rejected by the router and no acknowledge
signal is sent to the sender.

The flits integrity checking mechanism is based on flits
counting and the CRC calculation. The flit counting
mechanism uses the Nbre field of the header of the packet to
be transmitted and allows the identification of EOP. The
CRC checking uses an 8 degree polynomial code that is
added as a suffix in each flit. The receiving router that has
recomputed the CRC compares it with the suffix of the
received flit. If the value of the recomputed CRC code is
different from the transmitted one, the receiving router wait
until this flit is transmitted again based on the Aloha

retransmission technique ore reject it when the number of
possible transmission is reached.

The flit counting mechanism, the Aloha retransmission
technique, the dynamic arbitration and the CRC cheeking
are actually the unique QoS services that are implemented in
the proposed router. Other QoS can be added and they are
coded in the QoS_id field of the header. For example the
CRC code is “0001”, etc.

The role of the generic FIFO module is to store the
transmitted packets. All the flits coming from the flow
control unit are pipelined through the FIFO to the routing
and service unit when they are transmitted.

Send Flit

Time_out over/
Acknowledgment

received

Initialization

Counter = Nmax ?

Wait
Acknowledge

Counter = Counter+1

Time_out over?

Fig. 5 Flow chart of the retransmission Aloha protocol

After receiving a given flit and if this flit is a header, the

routing and service unit takes the necessary information to
determine the direction towards the data will be sanded.
Then it consults the arbitration unit which manages the
access to the selected port. If the routing and service unit
receives an acknowledge signal from the arbiter module it
sends the header in the corresponding direction and all the
flits will be sanded in the same direction. The requester that
is granted by the arbiter switches the heading towards the
given output port. This port remains reserved until all packet
flits are carried out. If during the routing step, this output
port is blocked, the router stores the received flits on the
corresponding input port in order to send them later when
the output port becomes free. Each requester not having
access to the output port and whose request was rejected by
the arbiter increments its internal counter and wait for a Td
time. Once this time is over, the requester starts again the
same request with the arbiter. When the counter reaches a
maximum value Nmax, the routing and service unit
determines other output port, and a new request cycle will
begin. The Td time and the Nmax value are generics.

The aim of the Aloha retransmission mechanism is to
resolve the problem of loss or the reception delaying of the
acknowledgment signals transmitted by the router. This

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:7, 2007

1035

problem is fatal for the NoC since the transmitter can stop
the transmitting, for lack of emission credit. The conflict
which results from it can retro propagated until blocking the
NoC completely. The advantage of the Aloha retransmission
protocol lies in its simplicity. The flow chart of this protocol
is given by Fig. 5 where Nmax represents the maximum
number of retransmission and time-out indicates the
maximum latency of the acknowledgement signals.

3. Dynamic arbiter

In order to resolve access conflict to the output ports, a
dynamic arbiter that allows the resolution of access conflict
problems of each output port starting from the priority
information of each incoming packet has been designed.

ReqIN (5 bits)
(P/F/A)*4ports

Ack (5 bits)

Comp_N

C4

Arb_N

C4

Comp_S

C4

Arb_S

C4

Comp_W

C4

Arb_W

C4

Comp_E

C4

Arb_E

C4

Comp_L

C4

Arb_L

C4

Grant_N

Grant_S

Grant_W

Grant_E

Grant_L

(a)

Comparator

 Arbiter module

(b)

Fig. 6 Architecture of the dynamic arbiter

This dynamic arbiter is constituted by a speed

independent round-robin arbiter and a comparator module.
Thus, a router with N input/output ports integrates N
dynamic arbiters with N round-robin arbitration modules
and N comparators as presented by Fig. 6.a in the case of a
2D mesh NoC arbiter that contains 5 input/output ports
(Local, East, West, North and South). Each dynamic arbiter
serves the 4 demands that are addressed to every port. The

requests effectively allocated by the different comparators
are treated by the corresponding arbiter modules.

Each dynamic arbiter is constituted by m comparators and
m round robin arbitration modules interconnected by m C-
elements (m represents the number of requesters) and an OR
gate as shown by Fig. 6.b in the case of an arbiter with 4
requesters. After receiving the request signals from the
requesters, the priority comparator stores the priority values
from the priority busses of the active requests and compares
them. After the comparison step, the comparator sends out a
set of internal signals that correspond to the requesters that
have the highest priorities.

After being combined with 4 C-elements, the output
signals are transmitted to the arbiter module. Thus, only the
requesters that have requested the access and that have been
selected by the comparator module will be treated by the
arbiter. If there is only one requester that has been selected
by the comparator it will be granted the access automatically
by the arbiter and the priority list is shifted in a circular way.
If there is two or three requesters that have the same
priorities orders, then the requester that has the last highest
priority order will gained the access and the priority list is
shifted in a circular way. The outputs of the C-elements that
enter to the arbiter module will be activated only if the
requesters have requested the access and they are selected
by the comparator. If a requester has gained the access the
comparator module will deactivate the generated internal
signals. This scheme is implemented by an enable (En)
signal that is generated by an OR gate with 4 inputs (Grant
signals). The outputs of the C-elements that enter to the
arbiter still high until the active requests become low. Also
the comparator will be activated again only if the enable
signal becomes active (the actual requester has released the
bus).

4. Routing table and switch

After the arbitration phase, the arbiter sends a request to a
table which checks the state of the concerned output ports
and acknowledges the arbiter if one of these ports is free.
The state of each output port (free or occupied) is
memorized in a register.

The switch allows commutating the flits coming from the
PMU units towards the wearing of selected destinations.
Each PMU communicates with the switch thanks to two
signals UX and ADRX. UX is the port with 32 bits which
conveys the flits coming from the PMU unit X and ADRX is
the address coded on 3 bits chosen by the PMU unit.
Address ADRX is communicated by the PMU unit X with
the switch to choose the address of the output port through
which the flit must be transferred. This address also makes it
possible to the switch to acknowledge the external core
towards which the flit is intended.

B. Generic Parameters of the Spidergon NoC
The proposed Spidergon NoC is a flexible, easily

extensible network and offers a variety of services to the
communication owning to the fact that it is completely
generic. It makes the possibility of choosing and modifying
parameters such as the width of interconnection, the depth
of the FIFO, the sizes of the fields of the flits, the maximum
number of retransmission of a flit and a request of the arbiter

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:7, 2007

1036

and the propagation times of the signals which prove very
important for the correct operation of the total system.
Moreover, it is generic in terms of supported number of
cores. The development of this network is based on a library
of generic models of VHDL blocks. The files of this library
contain protocol (number of retransmissions, allowed
requests, time out, degrees of adaptability and size of each
field forming the various types of flits) and physic (width
and depth of the FIFO, number of input/output of the routers
and the valence m of the network) parameters.

These files also contain all the functions used by the
VHDL blocks like the path calculation function, the CRC
checking function, etc. The generation of the Spidergon
architecture is done automatically by indicating the valence
m in the package file by using the VHDL GENERATE
clause. The portion of the VHDL code of Fig. 7 shows how
to generate the peripheral routers in an elementary Polygon
network of valence m.

 Generate: For i in 1 to m generate
 Perif_Router: Router generic map(width,i)
 port map(R0=>Request_in(i),
 Data_in0 => Input((i+1)*width-1 downto i*width),
 --
 …);
 End generate;

Fig. 7 Clause GENERATE for generating peripheral routers of the
elementary polygon network

C. Routing Function

The Spidergon network has a strategy of distributed
routing. Each router is independent to the others routers and
makes the decisions of switching and memorizing of the flits
in each input port without the intervention of a central
synchronization. Switching is carried out thanks to an
adaptive routing function which uses the heading data of the
packet, in particular the destination address, to calculate the
output port of the flit. The routing function depends on the
position of the router in the network as of the number of the
input/output ports that it contains. The central router
intervenes if there is congestion.

For routing a packet received on an input port i of a given
router, the routing unit of this port decodes the packet
heading and extracts the address of the destination module
to be reached by the packet. Then it calculates the number of
the output port to be used by the flits by using the router and
the target core addresses as parameters.

III. EXPERIMENTS
The performances of the proposed NoC are studied and

compared with two other NoC with similar architectures
(Mesh and Tore).

A parameterised network model was constructed using
HASE (Hierarchical Architectural Simulation Environment)
[23]. The underlying simulation system is multi-threaded
and even-driven. Each tile or node generates packets with
random destinations. Packets are generated at a constant rate
and queued until they are able to enter the network. The
interval between the creation of individual packets is
random (geometric distribution) to prevent packets being
injected into the network synchronously. Network latency is

measured from the time the first flit is created to the time the
last flit in the packet is received at its destination, including
any time spent buffered at the source node. Each node
injects 1000 packets into the network and performance
statistics are gathered after an initial warm-up period of 100
packets/node. Packets are 64 flits in length.

Fig. 8 Latency versus load for two Spidergon architectures

Fig. 8 shows the evolution of average latency according
to the load for two sizes of the Spidergon architecture. The
Spidergon architecture of valence m=12 contains 37 routers
and the Spiergon architecture of valence m=20 contains 61
routers. It can be seen that the latency increases with the size
of the network. Indeed, for weak loads the average way
borrowed by the packets increases with the number of router.
Moreover, the network saturates more quickly. A Spidergon
network of valence m=20 saturates starting from a load
equivalent to 40% whereas a Spidergon network of valence
m=12 saturates with a load equivalent to 60%. Indeed, a
larger network emits more packets. It proposes also more
buffers for stoking these packets in the event of conflicts.
But in an important network the ways are requested by more
packets simultaneously thus a conflict affects more packets
and saturation intervenes earlier.

Fig. 9 Latency versus load for three architectures (Spidergon, Mesh

and Tore)

The Fig. 9 shows the evolution of average latency
according to the load for architecture Spidergon of valence
m=12 (37 routers) and two other similar architectures Mesh
2D and Tore with 32 routers (8x4). The Spidergon
architecture is characterized by a lower latency than the two
others architectures. This difference is increasingly large
after saturation. Also the network Spidergon saturates later
than the two others architectures. Indeed, the packets cross
less routers number in the Spidergon network than in the
network Mesh 2D and Tore. In fact it is noticed that no
matter what the number of the used links is high the
Links×Diameter (L×D) product of the Spidergon NoC
remains always lower than that of the Tore and the Mesh 2D
networks (Fig. 10).

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:7, 2007

1037

Fig. 10 Comparative study of the proposed NoC with Mesh 2D and

Tore architectures in terms of Links×Diameter parameter

Fig. 11 shows the evolution on the area of the networks
Mesh 2D, Tore and Spidergon according to the number of
router in technology CMOS 0.35 µm for buffers of 6 words.
The more important the network is, the more the differences
between areas of the three networks are large. This is due to
the central routers of the Spidergon network which have
(m+1) buffers, whereas in a Tore architecture all the routers
have 5 buffers and in the Mesh network the peripheral
routers have only 3 or 4 buffers.

These results show that the proposed Spidergon
architecture is powerful in term of latency comparatively to
the other two architectures. Its limitation comes from it’s
over cost on the area particularly for an important network.

Fig. 11 Area of the NoC versus number of routers in the case of the

Tore, Mesh and Spidergon architectures

IV. CONCLUSION

This paper presents a flexible and easily extensible
asynchronous NoC architecture that offer a variety of SoC
communication services owing to the fact that it is
completely generic. The router that is integrated in this
architecture and that is based on a dynamic routing function
allows to modify and to choose starting from a
parameterized library different protocol and physic
parameters. The protocol parameters consists on the Aloha
retransmission time-out, the requests and their
retransmission numbers, the adaptability degrees, the size of
each field forming the various types of flits, etc. The
physical parameters consist on the width and the depth of
the FIFO, the number of the input/output ports, the valence
m of the NoC, etc.

Compared with other NoC with similar architectures, the
value added by the Spidergon architecture, resides in its
capacity to handle a suitable cost/performance compromise
in the field of NoC. This thanks to its wide generic character
and its constant and low diameter. It was shown that the
Spidergon architecture is characterised by the lower latency
and the later saturation. It is also shown that no matter what

the number of used links is raised; the Links×Diameter
product permitted by the Spidergon architecture remains
always the lower. The only limitation of this architecture
comes from it’s over cost in term of silicon area.

In order to allow the use of the Spidergon architecture at
various levels of abstraction we are under modelling it in
SystemC language at TLM (Transaction Level Modelling)
that is suggested by OCP-IP (Open Protocol-International
Core Partnership). Moreover we are also under modelling
powerful adapters of protocols and/or levels which allow a
fast and accurate communication. Indeed routing of the data
with the IP which treat them remainder in the systems on
chip a source of congestion.

REFERENCES
[1] I. Sutherland, “Micropipelines,” Comm. of ACM, vol. 6, 1989.
[2] Sonics, Incorporated, http://www.sonicsinc.com.
[3] W. Peterson, “Design philosophy of the wishbone SoC architecture,”

1999. Available: http://www.silicore.net/wishbone.htm
[4] D. Flynn, “Amba: enabling reusable on-chip design,” Intl. J. IEEE

Micro, pp. 20-27, 1997.
[5] IBMCoreConnect Information, 2000. Available:

http://www.chips.ibm.com/products/powerpc/cors
[6] J. Liang, S. Swaminathan, and R. Tessier, “A SoC: a scalable, single-

chip communications architecture,” IEEE Intl. Conf. Parallel
Architectures and Compilation Techniques, pp. 524-529, 2000.

[7] H. Ho, and T.M. Pinkston, “A methodology for designing efficient
on-chip interconnects on well-behaved communication patterns,” The
9th Intl. Symposium on High-Performance Computer Architecture
(HPCA’03), pp. 377, 2003.

[8] S. Kumar, A. Jantsch, J. Soininen, M. Forsell, M. Millberg, J. Oberg,
K. Tiensyria, and A. Hemani, “A network on chip architecture and
design methodology,” Proc. IEEE Computer Society Annual
Symposium on VLSI, pp. 105-112, 2002.

[9] J. Hu, and R. Marculescu, “Exploiting the routing flexibility for
energy/performance aware mapping of regular NoC architectures,”
Proc. Design, Automation and Test in Europe Conference, 2003.

[10] T.T. Ye, L. Benini, and G.D. MICHELI, “Packetized on-chip
interconnect communication analysis for MPSoC,” Proc. Design
Automation and Test in Europe, pp. 344-349, 2003.

[11] W.J. Dally, and B. Towles, “Route packets, not wires: on-chip
interconnection networks,” Proc. the 38th Design Automation
Conference, 2001.

[12] L. Peh, and W.J. Dally, “A delay model and speculative architecture
for pipelined routers,” 7th Intl. Symp. High-Performance Computer
Architecture (HPCA), 2001.

[13] R. Mullins, A. West, and S. Moore, “Low-latency virtual channel
routers for on-chip network,” Proc. 31st Intl. Symp. Computer
Architecture, 2004.

[14] H. Wang, L.S. Peh and S. Malik, “Power driven design of router
microarchitectures in on-chip networks,” Proc. MICRO-36, 2003.

[15] E. Rijpkema, K. Goossens et al., “Trade-offs in the design of a router
with both guaranteed and best-effort services for networks on chip,”
IEE Proc.-Comp. Digit. Tech., pp. 294-302, 2003.

[16] L. Benini, G.D. Micheli, “Networks on chips: a new SoC paradigm,”
IEEE Computer, vol. 1, pp. 70-80, 2002.

[17] J. Schmaltz, D. Borrione, “A generic network on chip model,”
Research reports, TIMA Laboratory, Grenoble, France, 2005.

[18] OCP International Partnership. Open Core Protocol Specification. 2.0
Release Candidate, 2003.

[19] N. Banerjee, P. Vellanki and K.S. Chatha, “A power and performance
model for network-on-chip architectures,” Proc. DATE, 2004.

[20] P. Vellanki, N. Banerjee and K.S. Chatha, “Quality-of-service and
error control techniques for network-on-chip architectures,” Proc.
GLSVLSI’04, Boston, USA, pp. 45-50, 2004.

[21] W.J. Bainbridge, S.B. Fuber, “Chain: a delay insensitive chip area
interconnect,” IEEE Micro, vol. 22, pp. 16-23, Sep./Oct. 2002.

[22] Bainbridge, S.B. Fuber, “Asynchronous macrocell interconnect using
marble,” International Symposium on Advanced Research in
Asynchronous Circuits and Systems, pp. 122-139, IEEE Press, Avril
1998.

[23] P. Coe, F. Howell, R. Ibbett, and L. Willams, “A hierarchical
computer architecture design and simulation environment,” ACM
Transactions on Modelling and Computer Simulation, 8(4), October
1998.

