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Abstract—The present work is motivated by the idea that the 

layer deformation in anisotropic elasticity can be estimated from the 
theory of interfacial dislocations. In effect, this work which is an 
extension of a previous approach given by one of the authors 
determines the anisotropic displacement fields and the critical 
thickness due to a complex biperiodic network of MDs lying just 
below the free surface in view of the arrangement of dislocations.  

The elastic fields of such arrangements observed along interfaces 
play a crucial part in the improvement of the physical properties of 
epitaxial systems. New results are proposed in anisotropic elasticity 
for hexagonal networks of MDs which contain intrinsic and extrinsic 
stacking faults. We developed, using a previous approach based on 
the relative interfacial displacement and a Fourier series formulation 
of the displacement fields, the expressions of elastic fields when 
there is a possible dissociation of MDs. The numerical investigations 
in the case of the observed system Si/(111)Si with  low twist angles 
show clearly the effect of the anisotropy and thickness when the 
misfit networks  are dissociated. 
 

Keywords—Angular misfit, dislocation networks, plane 
interfaces,  stacking faults. 

I. INTRODUCTION 
ENERALLY, the interface structures do not result from 
the exact joining of two lattices and it should necessary 

inserted the interfacial dislocations to describe this interface 
which many properties are reliant. Our work is devoted to the 
study of epitaxial systems with semi coherent interfaces which 
contain sometimes complex periodic networks of misfit 
dislocations (MDs).Since the elasticity problem is too difficult 
in the general case, particular limiting boundary conditions 
have been considered. For the clarification of such complex 
surface reconstructions, numerous works have been presented 
in recent years. Theoretical studies, especially those dealing 
with isotropic elasticity lead to expressions easy to use (e.g. 
Bonnet R. [3]).  

Similar expressions are obviously impossible to obtain from 
a formulation based on anisotropic elasticity since it requires 
numerical solutions. At the same time, quantitative study of 
image contrast necessitates an exact description of the elastic 
properties of dislocations. For example, the transmission 
electron microscopy (TEM) estimation of the vertical 
magnitude of the contrast distortion due to MDs in very thin 
films is extremely difficult, since a knowledge of the precise 
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beam conditions and the elastic properties of the epilayer and 
substrate is necessary for estimate the vertical magnitude of 
surface distortion in the TEM data (e.g. Belk and col [4]). 

In the literature, it is mentioned that the observed periodic 
networks of dislocations ended, often, by dissociation. The 
techniques of high resolution electron microscopy (HREM) 
and scanning tunnelling microscopy (STM) confirms such 
hypothesis. Taking the example of the annealed (111) Ni75Pt25 
single crystal as observed by STM, computer-generated i 
images depict correlations between the positions of the 
calculated ditches and subsurface misfit dislocation segments 
(e.g. Bonnet R. [5]). This author has cited that the surface 
structures observed by STM may be described as a domain 
system created by periodically arranged regions with stacking 
faults and partial dislocations. During the deposition of InAs 
on GaAs, the junction closes by forming an open triangle from 

three partial dislocations ( ><= 110
2
ab ), so that the final 

network is still hexagonal, with alternate open nodes, but 
enclosed within the partial dislocation triangle is a stacking 
fault in the (111) growth plane (e.g. Joyce and col. [6]). Also, 
the STM images given for the InAs/(111) GaAs heteroepitaxy 
shown that the network of edge dislocations is confined to the 
interface with no threading component, and is established 
between 3 and 5 ML InAs thickness, whereupon the slip 
dislocation systems become active and dominate the surface 
morphology there-after (e.g. Belk and col [7]).For the low-
angle twist boundary Si/(111)Si with a misorientation about 
0.5°, an hexagonal network of screw dislocations is expected 

with Burgers vectors ><= 110
2
ab .  

The dislocation nodes are expected and overlap thus 
forming a "node network" of dislocation nodes with 
alternating intrinsic and extrinsic stacking faults (denoted 
below ISFs and ESFs) (e.g. Föll and col. [2]). 

In the present paper, it will be shown that the effect of 
anisotropy is important and, in principle, the isotropic 
formulation may not calculate rigorously the elastic fields for 
some applications.  

II. BIPERIODIC ELASTIC FIELDS 
Fig. 1 and Fig. 2 depict the Cartesian frame Ox1x2 x3 used 

for calculations and the symbols attached to the geometry of 
the plate like bicrystal for the complex case of dissociated 
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dislocations. Point O is in the middle of the hexagonal based 
pattern UVWRSZ.  

The free surface is located at algebraically elevations x2 
denoted h. Vectors a and c are the period vectors of the 
network. The MD pattern is supposed to accommodate 
simultaneously the interfacial length and/or angular misfits to 
the two crystals. bZU and bUV are the vectors of Burgers of 
segments ZU and UV respectively. In the middle of ZU for 
example the function is equal to bZU /2 and in the middle of 
RW it is equal to - bZU /2. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 Geometry of the basic hexagonal cells which constitute   the 
network of MDs, periodic vectors a and c.  Undissociated nodes.          

321 xxOx  is the cartesian frame of calculations and '
3

'
2

'
1 xxOx  is 

the frame attached to the crystal 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2  Geometry of the cells which constitute the network of 

MDs.The trigonal network is located at the interface ( X2 = h = 0 nm) 
 
Relative biperiodic displacement 

0x2 =
−+ −=Δ uuu is 

developed in double Fourier series on the whole of the vectors 
G (m, n) of the associated reciprocal network.  

In the skew frame with unit base vectors (c, a), the relative 
displacement along the interface is written in indicial notation: 
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Where R is a vector of the direct lattice, issue from the centre 
of hexagon and belongs to the interface. G is the vector of the 
reciprocal lattice. The position of the apex u of the triangle 
uvw' along UV (Fig. 3) was selected to specify the extent of 
dissociation such as: 

             a    c  u )q21(qO −+=                                (2) 
The extension of the dissociation from the node U defined by 
p, such as:    q1p −= , produces an extra displacement along 
the triangles within the orientation indicated in Fig. 3, these 
extra displacements  are described respectively by : – b1, b2, 
b3, b4, b5 et – b6. This extension may be represented by the 
surface ratio r defined by: ])q3(2/[)q32(r 22 −−−= . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Fig. 3  Geometry of triangular dissociation. Open node V.  Partial 
dislocations having Burgers vectors b1, b2 and b3. Open node U. 

Partial dislocations having Burgers vectors b4, b5 and b6. The arrows 
along the lines of dislocations specify their orientations 

 
To represent the complete relative displacements, these 

extra displacements must be added at those described by the 
equation (3) for all the points inside the hexagon UVWRSZ. 

When the six nodes are dissociated, the Fourier series 
expressing the final interfacial function uΔ is given by: 
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A.  Displacement Field Uk 
As a result, an expression for the displacement field of the 

MD pattern may be written in a double Fourier series. Using 
the same conventions and symbols as those given in [8]. 
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B.  Stress Expressions 

The derivation of the equation (4) and the application of 
Hooke's laws lead to the stress expression, which is defined in 
it compact form by the equation (5). The method used is 
detailed in [8]. 
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C.  Limiting Boundaries Conditions 
i The displacement field u is biperiodic and parallel 

to the interface. It is discontinue through the 
interface, aside from the centres of the cells of the 
hexagonal networks. The discontinuity of u le 
along the interface noted Δu  is relatively complex 
to formulate analytically in the case of the 
dissociation, but it can be written under its compact 
form as follow:  

[ ]∑
≠

π−== 0
)i2exp()i(

2
1

02x G
GR kT  kH    Δu                 (6) 

 
In the expression (6), the vectors T and H are depends only of 
the geometry of the MD lines and their Burgers vectors. 

ii Continuity of the stresses k2σ at the interface 
The condition of the equilibrium of the interface is satisfied 
when the components of the normal stresses are equal to zero:  

                      0xk20xk2
22 =

−
=

+ σ=σ                           (7)                                                                                                                            

iii Zero applied stress k2σ  at the free surface : 

For hx 2   = , the normal stresses +σ k2 are zero.                                           

                    0h2xk2   ==
+σ                                       (8)                                                                                                                             

After tedious developments of the limiting boundary 
conditions, a system of 9x 9 complex equations is obtained 
with 9 unknown coefficients. This system can not, be solved 
analytically. The solution of the linear system has been found 
by a numerical inversion of the system. In this context, a 
double precision Fortran programme of calculations is written 
to evaluate the anisotropic elastic fields and give the distortion 

of the free surface whatever be the nano-thickness of the 
layer. This method turned out to be rigorous for the study of 
any geometry of MD networks. 

III. APPLICATION 
The image Fig. 4 obtained by Föll is the basis of this 

application. It illustrates the dissociated hexagonal network 
into ISFs and ESFs respectively in the interface of a 
Si/(111)Si low-angle twist boundary. This interphase 
boundary Si/(111)Si separates an epilayer whose thickness is 
denoted h and a substrate. The layer is slightly disorientated in 
torsion compared to the substrate of an angle β = 0.5° around 
the axis Ox2 perpendicular to the interface. The initial 
hexagonal network of dislocations whose period is a = c = 10 
nm is dissociated in all its triple nodes of partials of Shockley 
delimiting alternatively intrinsic and extrinsic stacking faults. 
The elastic anisotropic fields are determined and the curves 
simulate the state of the free surface describing the extent of 
the dissociation of the nodes.  

 

 
Fig. 4 Low twist boundary on {111} plane imaged with  STM. It 
shows contrast from the stacking faults in the intrinsic nodes (the 

extrinsic nodes are in good contrast) 

IV. RESULTS AND DISCUSSION 
In reference to the work achieved by Bonnet [5] which 

treats the same model in isotropy, we plotted, in quasi 
isotropy, the curve of the free surface elevation in function of 
the dissociation. The curves of Fig. 5 (a) and Fig. 5 (b) are 
represented for a thickness of the layer equal to 4 monolayers. 
The results are similar to those obtained in isotropy. Indeed, 
when the curve of Fig. 5 (b) and the curve obtained by 
Bonnet, in the isotropic case, for the annealed (111) Ni75Pt25 
single crystal are analysed, it is noteworthy that the shape of 
the curve traced in quasi-isotropy is in conformity, which 
makes it possible to conclude a validation of the calculation 
program. The elevation is less important in quasi-isotropy than 
in anisotropy. It is really impressive that the difference which 
exists in term of elevation to the top in the FEI (node V) and 
in the FEE (node U) is about 0.02 nm when the network is 
completely dissociated (p=q=1/2). The evolution of this 
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elevation according to the dissociation of nodes U and V 
reports two states different from surfaces under jacentes 
generated by the dissociation of the MDs in partial of 
Shockley limiting alternately intrinsic and extrinsic faults 
described by the orientation of vectors b1, b2, b3 and b4, b5, b6 
respectively. 

The contrast of each image is brighter for high elevations. 
Fig. 6 (c) exhibits star like contrasts when ISF's and ESF's are 
equally present (p=q=1/2). For this particular case, the 
numerical image is similar to the Fig. 4. It is important to note 
that the points of the tops of the triangles are not perfectly 
superposed. It can be explain discreetly by the fact that the 
dissociation is determined by an energy balance between the 
stacking faults. The experience shows that, really, the energy 
of the FEE exceeds that of the FEI (e.g. Hirth [9]). In 
Consequences, the effect of anisotropy is far from being 
negligible; and the isotropy may not give the precision 
expected for some applications.  

Also, it is notable to know that the present method may also 
apply to regular networks for which the surface layers have a 
chemical nature different from that of the substrate and 
heteroepitaxial systems. 
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Fig. 5 Change of the free surface elevation directly above  points O, 
U and V in function of the surface ratio r, when the extensions of the 

ISF's and ESF's  increase simultaneously 
 

The images represented on the Fig. 6 are numerical 
simulations and are equivalents to the STM images. They 
describe the effect of the extent of the dissociation on the 
deformation of the free surface. It is found that when the node 
U is not dissociated (q = 1/3 and p 2/3), the FEI situated at the 
level of the point V is completely separated in a triangle well 
determined. On the other hand, when the node U is dissociated 
(a), the FEE seems a little bit vague in contrast (b) but she is 
defined well when the outline is stage fright. 
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Fig. 6 Examples of calculated free surface relief of               
Si/(111)Si. The white (black) contrasts correspond to bumps (ditches) 

of the free surface. The thickness of the epilayer is 4 monolayers 
 

It is known that in the techniques of epitaxy, the epitaxial 
stresses relax generally by introduction of dislocations or by 
the propagation of the dislocations pre-existent. The relaxation 
is realized progressively with the thickness of the layer 
deposited. The Fig. 7 described the topologies of the free 
surface in the planes (x2,x3) and (x2,x1), for thicknesses of the 
epilayer between 4 and 20 mono layers and for a coefficient of 
dissociation p = q = 1/2. It appears on the point x1 = x3 = 0 in 
the plane (x2,x3) and for a thickness h = 4 mono layers a light 
tension related to the value of the vector b1. This tension is 
vanished entirely for h = 6 mono layers. 

Our aim is to determine the critical thickness of this system. 
In effect, for h = 20 mono layers, the magnitude of the 
distortions is less than 0,001 nm. For h = 30 mono layers, 
there is no deformation of the free surface. 
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Fig. 7 Topologies of the free surfaces for a thicknesses h = 2, 4, 6, 8, 
10, 12, 14, 16, 18 and 20 monolayers and for an equal dissociation (p 

= q 1/2) 

V. CONCLUSION 
The scope of this application is twofold: first, the limit of 

the calculations in isotropic elasticity is obviously shown. 
Second, STM images observed by Föll and col. are simulated 
and the elastic fields determined with precision. 
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