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Abstract—The current methods of predictive controllers are 

utilized for those processes in which the rate of output variations is 
not high. For such processes, therefore, stability can be achieved by 
implementing the constrained predictive controller or applying 
infinite prediction horizon. When the rate of the output growth is 
high (e.g. for unstable nonminimum phase process) the stabilization 
seems to be problematic. In order to avoid this, it is suggested to 
change the method in the way that: first, the prediction error growth 
should be decreased at the early stage of the prediction horizon, and 
second, the rate of the error variation should be penalized. The 
growth of the error is decreased through adjusting its weighting 
coefficients in the cost function. Reduction in the error variation is 
possible by adding the first order derivate of the error into the cost 
function. By studying different examples it is shown that using these 
two remedies together, the closed-loop stability of unstable 
nonminimum phase process can be achieved. 
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I. INTRODUCTION 
ODEL predictive or receding horizon controllers have 
received a great deal of attention and receive an ever 

growing interest for applications in industrial process control. 
Nevertheless the stability of model predictive control schemes 
is difficult to analyze and few results are known which 
guarantees stability of the model predictive controllers. 

In particular, four main approaches can be distinguished in 
addressing the issues of the closed-loop stability. The first 
approach is to use an infinite prediction horizon with a finite 
control horizon [1]. This method is not practical for some 
processes. Another approach is to add an equality constraint 
(hard constraint) in the objective function [5, 6]. Usage of this 
method may cause in saturation on the input and/or 
infeasibility of the optimization problem. In the third 
approach, hard constraint substituted with a penalty on the end 
point state in the cost function [2-4]. In the fourth method, the 
process is first stabilized and then controller is designed. 

We first show that for some processes, stability doesn’t 
occur by implementation of these methods and then propose a 
new approach to solve the problem. 

The paper is organized as follows. In Section II, the 
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prediction model structure is introduced. In Section III, the 
proposed cost function is discussed. Discussion on error 
growth avoidance is given in Section IV. Numerical 
simulations are carried out in Section V for illustration and 
verification of the presented methodology. Finally some 
concluding remarks are given in Section VI. 

II. PROCESS MODEL AND CONTROL STRATEGY 
Generalized predictive control (GPC) has been widely used 

in process control engineering, because of its good tracking 
performance and ability to manipulate constraint. Furthermore, it 
is basically output feedback control and for this reason we 
discuss model and prediction issues on the transfer function 
basis. 

Consider the ARIMAX (Auto-Regressive Integrated 
Moving-Average eXogenous) model given by: 
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where q  is the shift operator, )(tu  and )(ty  are the input and 
the output of the system, and )(te  is the unpredictable 
disturbance in the system. For Convenience, )( 1−qC  is 
assumed to be one, which means that the disturbance 
sequences are uncorrelated. 

In order to derive a GPC formulation, the future outputs of 
the system should be predicted based on the future inputs and 
past inputs and outputs. To do this consider: 
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In the vector-matrix form, relation in (2) can be written as: 
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If )(tr  is to be as a reference signal and α  as a time 
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constant for input filter (in which its value determines the way 
of reaching output to reference signal based on equation (4)), 
then the original cost function for GPC is considered in the 
form of equation (5). 
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III. NEW COST FUNCTION 
Consider the following cost function with three terms: 

prediction error, prediction error variation, and input variation. 
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The future outputs of the system can be determined as 

follows: 
 

)()1()()(

)2()1()()2(
)1()()1(

1

12

1

PtfPtugtugPty

tftugtugty
tftugty

P ++−+∆++∆=+

+++∆+∆=+
++∆=+

L

M
     (7) 

 
Define prediction error variation vector e  and desired output 
vector dy  as; 
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the cost function in (6) can be simplified as; 
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By substituting from (3) for y , (9) is rewritten as; 
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where bar (-) stands for variation of the corresponding term. 

Minimizing of the cost function in (9) by adjusting input 
variations results in the following performances; 

1. Minimizing the difference between the process output 
and its desired trajectory. 

2. Decreasing the variation of the above differences. 
3. Minimizing the variation of the future inputs. 

The optimal input variations are given as; 
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Using the first term of )(tu∆ , )(tu  is obtained from the 
following equation and applied to the process. 
 

)1()()( −+∆= tututu  
 

Based on the obtained result and the latest measured data 
the whole procedure is repeated in the next steps. 

IV. AVOIDING THE ERROR GROWTH 
Consider the cost function of equation (6) to be one that is 

used in the predictive controller. The weight matrices of S , R , 
and Q  are diagonal with varying elements respect to the 
prediction time. 

S , R , and Q  matrices are considered to have the following 
structure. 
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where α , β , and γ  have values between 0-1. In this case the 
weight of the first sentences in the cost function (6) would be 
more than the final sentences. This matter leads to the point 
that the trust of first sentences in optimization is greater than 
the final sentences. This action has two outcomes: first, the 
error weight of the first predictive step in optimization is 
considered more than the others, and second, the first terms of 
predictive input play more roles in optimization. With 
applying this method in an unstable process, the errors are 
forced not to be increased. 

V. COMPUTER SIMULATIONS 
For comparing this method with original GPC and as well 

as stabilizing methods (of predictive controller type) different 
states of unstable process were studied, where the outcomes 
are as follows: 

A.  Process with non-repetitive right hand side poles 
To control this kind of process such as the one given in 

(12), existing methods such as the Constraint Receding 
Horizon Predictive Control (CRHPC) which stabilizes the 
closed loop system using the hard constraint and Weighted 
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GPC (WGPC) which stabilizes the closed loop system using 
the soft constraint work properly provided that appropriate 
control parameters P  (predictive horizon), M  (control 
horizon) (e.g. 86 −== MP ), and number of final constraint 
(e.g. 3=m ) are selected. 
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B. Process with non-repetitive right hand side poles and 
zeros 
Transfer function of (13) represents a system with right hand 
side pole and zero. 
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Ordinary GPC is not able to guarantee the closed stability of 
the system. However, implementation of GRHPC method with 

86 −== MP  and final states constraint 3=m , stabilizes the 
closed loop system. 

C. Process with repetitive right hand side poles 
Process given by (14) has repetitive poles in right hand 

side. 
 

025.015.09.0
26.02.0)(

23

2

++−
++

=
sss

sssG            (14) 

 
The existing methods of stabilizing GPC such as CRHPC, 

WGPC, and Mixed Weighting GPC (MWGPC) [7] were 
implemented in which all relative conditions are considered. 
Adjusting the control parameters did not help to get a stable 
closed loop system. 

The proposed method of this paper implemented using the 
following set of control parameters. Simulation results are 
given in Fig. 1. 
 

05.0,05.0,05.0,5 ===== γαβMP  

D. Process with repetitive right hand side poles and zeros 
Process given by (15) has real repetitive poles and two 

zeros in right hand side. 
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The existing methods of stabilization were implemented. 

None of them was able to stabilize the closed loop system 
although all given conditions of each method were considered. 
Using our proposed method, the stability is achieved with the 
following control parameters. Simulation results in this case 
are shown in Fig. 2. 
 

1.0,1.0,1.0,5 ===== γαβMP  

VI. CONCLUSION 
Here securing the closed loop stability is formed by the idea 

of avoiding the error growth. To fulfill this mean, first step in 
predictive more attention than next ones in cost function. 
Among general advantages of this method the followings may 
be of considerable ones. 

1. Since constraint is not added to the optimizing problem 
in the direct way, therefore those related problems to 
existing constraint such as offset and feasibility are 
avoided. 

2. The optimal value of α , β , and γ  can be determined 
offline, and then the controller can be used in online 
form. 

3. In studying different processes, it becomes appear that by 
selecting aforementioned optimized parameters; the 
system can be controlled with minimum control and 
predictive horizon. 

4. Since the determining of α , β , and γ  parameters are 
accomplished in the form of offline, therefore, within the 
operation one can use the broad and strong searching 
methods such as simplex search or genetic algorithm in 
determining the optimized value. 

 

 
 

Fig. 1 Simulation results for system in (15) 
 

 
 

Fig. 2 Simulation results for system in (16) 
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