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Abstract—This paper proposes a novel architecture for 

developing decision support systems.  Unlike conventional decision 
support systems, the proposed architecture endeavors to reveal the 
decision-making process such that humans' subjectivity can be 
incorporated into a computerized system and, at the same time, to 
preserve the capability of the computerized system in processing 
information objectively.  A number of techniques used in developing 
the decision support system are elaborated to make the decision-
marking process transparent.  These include procedures for high 
dimensional data visualization, pattern classification, prediction, and 
evolutionary computational search.  An artificial data set is first 
employed to compare the proposed approach with other methods.  A 
simulated handwritten data set and a real data set on liver disease 
diagnosis are then employed to evaluate the efficacy of the proposed 
approach.  The results are analyzed and discussed.  The potentials of 
the proposed architecture as a useful decision support system are 
demonstrated. 
 

Keywords—Interactive evolutionary computation, multivariate 
data projection, pattern classification, topographic map 

I. INTRODUCTION AND MOTIVATION 
OMPUTERIZED decision support systems, an inclusive term 
of many types of information systems that support 

decision-making [1], evolve from two main research fields: 
interactive computer systems and theoretical organizational 
decision-making [2]. Both classification and prediction 
techniques are important elements in most decision support 
systems.  However, to date, classification and prediction often 
do not provide any ability that reveals the underlying structure 
and information of the data set.  In general, the process of 
classification and prediction is conducted autonomously 
without much involvement from domain users.  Such an 
approach does not take advantage of the remarkable 
perceptive and associative abilities of human observers to 
perceive clusters and correlations, which usually can lead to 
better understanding of structures in data (see Figure 1).  This 
concealed approach is somehow disapproved with the Gestalt 
theory, in which an important aspect of the theory is that 
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humans gain most understanding by comprehending the 
meaning of the underlying progression of parts [3]. 
 

 
Fig. 1 Concealed design in the classification process 

 
According to [2], many researches on decision support 

systems focus on well-defined or highly structured problems, 
in which the systems are given a clearly specified problem 
statement that explains the 'goal state', the 'current state', and 
the 'permissible operations' they may use to get to the goal 
state from the current state.  In addition, [4][5] pointed out the 
difficulties to understand how such systems produce 
recommendation based on a given set of input.  To the end-
user, the reasoning process of these systems is a "black box".  
Indeed, many current decision support systems [6]-[9] do not 
acknowledge the role and importance of human behavior in 
the decision making process.  Decision making in the real 
world, however, often deals with unstructured or ill-defined 
problems in which decision makers have only a vague idea 
about the goal state and the current state as well as that the 
permissible operations may be undefined.  In such cases, the 
performance of a decision support system that cannot take into 
account the undefined operations will be compromised.  

More than forty years ago, Simon [10] introduced the 
notion of 'bounded rationality' of human decision-making 
abilities.  This notion argued that people are limited in the 
amount of information they can process and the methods they 
use to integrate information.  Simon also believed that if these 
limitations could be transcended, then the decision-making 
effectiveness would be enhanced. The integration of human 
and the computer was foreseen to be the best method for 
achieving these new heights for decision makers. 

Computers are known for their amazing power to organize, 
store, process, and retrieve vast volume of information.  One 
of the major contributions of computerized decision support 
systems is their ability to deal with large amount of 
information. The way of automated information processing of 
such systems also means all procedures to process information 
are predefined.  As the computer cannot be told to do what 
humans cannot define, Phelps et al [2] pointed the deficiencies 
of developing decision support systems that do not support 
decision-making that operates within bounded rationality.  In 
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other words, such systems take the rational approach that 
consider a decision in a logical, sequential, and in-depth 
analysis of alternatives on the basis of information without 
considering emotion or social pressure.  Although these 
systems overcome humans' limited ability to process 
information of the alternatives, it is crucial to acknowledge 
that not all alternatives led themselves to quantification that 
allows easy comparison [11].   

Instead of producing a system that automates decision-
making, this work aims to utilize a more pragmatic approach 
that allows participation of users in the decision making 
process.  With such integration, the deficiencies of the system 
can be mitigated by the subjectivity (qualitative) evaluation of 
humans and, at the same time, the deficiencies of humans can 
be mitigated by the objectivity (quantitative) evaluation of the 
system.  To enable a smooth integration of human into the 
decision support system, this research places emphasis on the 
human cognitive or thinking processes that are fundamental to 
decision-making, comprehends the deficiencies or errors that 
are associated with these processes, and devises methods of 
compensating for these deficiencies in processing. 

The organization of the paper is as follows.  The following 
section elaborates a novel architecture for integrating human 
and the computer into a co-operative platform.  Various 
methods used to incorporate support human cognitive 
processes in decision-making are presented.  An artificial data 
set is used to illustrate clearly the proposed approach.  A pen-
based handwritten digits recognition dataset and a real 
medical application on liver diseases diagnosis are included to 
demonstrate the efficacy of the system.    

II. THE PROPOSED SYSTEM ARCHITECTURE 
Figure 2 shows the system architecture of the proposed 

interactive decision support system.  In contrast to most 
decision support systems (as shown in Figure 1) which place 
sole reliance on the computer system to perform the decision-
making process, the proposed system architecture employs a 
number of approaches, such as data visualization, 
classification, prediction, and evolutionary computational 
search, to uncover the decision-making process in an effort to 
allow humans to utilize their perceptive and associative 
abilities in the process.  Revealing the underlying data 
structure and providing opportunities for human intervention 
during the decision-making process enables the integration of 
humans' subjective intelligence into the system and thus, 
reduces the limitation of conventional decision support 
systems.  The following sub-sections describe the techniques 
used in the proposed approach. 

A. Multi-dimensional data scaling and visualization 
Advanced methods of pattern recognition, data analysis, 

and visualization are becoming crucial to uncover important 
structures and interesting correlations in data in order to 
generate useful, meaningful, and even unpredictable 
information from flood of data.  Consequently, a large number 
of artificial neural networks and machine learning algorithms, 

particularly for feature extraction and data projection, have 
been proposed [12]-[16]. 

 

 
Fig. 2  Architecture of the proposed interactive decision support system 

 
Feature extraction and projection of multivariate data 

enables the visualization of high dimensional data in order to 
better understand the underlying structure, explore the 
intrinsic dimensionality, and analyze the clustering tendency 
of multivariate data [17].  In addition, visualization has played 
an important part as it takes advantage of human’s perceptive 
and associative abilities to perceive clusters and correlations, 
which usually lead to better understanding of the underlying 
data structure.  This work utilizes the kernel-based Maximum 
Entropy learning Rule (kMER) [18] as a multivariate data 
projection and visualization technique for mapping high 
dimensional data vectors to a lower dimensional space.   

The kMER model is an unsupervised competitive learning 
scheme that produces an equiprobabilistic topology-
preserving mapping from the n-dimensional input space to a 
discrete lattice, with N formal neurons in a fixed topological 
2D space.  The lattice topology is rectangular and its 
dimensionality is the same as that of the input space in which 
the lattice is based upon.  kMER is able to extract the 
maximum amount of information available about the input 
distribution during its learning process.  It has been 
successfully implemented in modeling sensory coding, non-
parametric Blind Source Separation, and non-parametric 
density estimation, e.g. for cluster or classification purposes 
[19].  

Consider a lattice A with a regular and fixed topology, with 
dimension dA in the d-dimensional space dV ℜ⊆ .  Let A be a 
lattice with N neurons, labeled i = 1,2,…,N, and 
corresponding kernel ),( iiK σwv − , V∈v , with a radially-
symmetric receptive field (RF) around its center, for example 
Gaussian, which has center iw  and radius iσ .  The cross-
section iτ  of the kernel, as shown in Figure 3, defines the RF 
region Si with radius iσ  in the V-space.   

When the current input v falls in Si, then supra-threshold 
activation occurs and the threshold is elevated, else sub-
threshold activation occurs and the threshold is lowered.  
These events are formalized by associating Si with a code 
membership function: 
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Fig. 3 A receptive field (RF) kernel ),( iiK σwv −  and a RF region 

S (adapted from [19]) 
 
 

Since the RF definition is not lattice-based, a different type 
of competition at the learning stage is used.  A fuzzy code 
membership function, )(viΞ , is introduced to update the RF 
center wi proportion to the function and in the general 
direction of v, as follows: 
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The rationale is to ensure that 1)(0 ≤Ξ≤ vi and ∑ =Ξi i 1)(v . 
Depending on the activation state of the neurons, the kernel 

centers wi and radii iσ  are adapted according to the following 
two learning rules.  In the “batch” mode learning, given a 
training set }{ µv=M  of M input samples, the RF centers are 
updated as follows. 
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where Sgn(.) is a sign function applied component wise for 
each neighborhood range, )(tΛσ ; t is the present time step; 
and η  is a learning rate. The Gaussian neighborhood function 
is used as follow: 
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where ri and rj represent the lattice coordinates of neurons i 
and j, and decrease the range in the following way: 
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with t the maximum number of time step, and 0Λσ  the range 
spanned by the neighborhood function at t = 0.  

The kernel radii iσ  are updated by using equation (6) so 
that the activation probability for unit i converges to 
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The mathematical details and proof of convergence can be 
found in [18].    
 

 B. Statistical Pattern Classification and Prediction 
This section describes a neural network model that 

implements a classical non-parametric density estimation 
procedure.  In addition, it elaborates the integration of kMER 
into the network to form a hybrid system.  The performance of 
the network is then compared with Bayes’ optimal results and 
other classification algorithms. 
  
 1) The PNN Model: The Probabilistic Neural Network 
(PNN) is a simple but powerful non-parametric classifier, 
which was proposed by [20] and originated from Parzen’s 
[21] kernel-based probability density function (pdf). The 
training process of the network is one-pass, without iteration 
for weight adaptation. The PNN algorithm is as follows. 

For a given data set v, the Parzen density function is 
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where dR∈v , G is the kernel function and σ is the 
smoothing parameter of the kernel function.  The kernel 
function often takes the Gaussian type as follows. 
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The Bayesian posterior probabilities are then computed, 
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with iC the class labels, k  the number of classes )( iCP the a 
priori probability of class iC , )|( iCp v the conditional 
density of class iC and v a given sample. Once the neurons 
are labeled, we can determine the class-conditional densities 
and classify a given sample into class )( *iCP when 

*),()|()()|( ** ijCPCpCPCp jjii ≠∀> vv  (10) 

or when its posterior probability satisfies: 
*),|()|( * ijCPCP ji ≠∀> vv  (11) 

 
2) The Hybrid kMER-PNN Model: The PNN algorithm 

described above uses all the samples in the training set to 
estimate the pdf and to perform classification.  If the data 
samples in the training set are corrupted by noise, the 
classification performance may be affected.  In the proposed 
hybrid kMER-PNN model, the prototype vectors from each 
class of the trained kMER map, instead of the original training 
samples (often with a large size), are used to estimate the pdf.  
The advantages of the integration are two-fold.  First, kMER 
is used as the underlying clustering algorithm to reduce the 
number of pattern nodes required in the PNN; second, the 
PNN is used as the probability estimation algorithm to provide 
probabilistic prediction from kMER. Suppose that the trained 
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kMER map has iCN (the number of RF regions of class iC ) 

nodes with label iC and the corresponding prototype vectors 

are iC
iC

j Nj ..,3,2,1, =w , the pdf of class iC is estimated using 
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After obtaining the estimated pdf of each class, the posterior 
probabilities are determined by using equation (9). Note that 

∑= j iCiCi NNCP /)( since with kMER, each RF region is 

equiprobabilistic and jσ are the kernel values located on each 
neuron weight. The proposed hybrid approach has the 
following advantages: 
a. kMER reduces the number of pattern nodes as required in 

the PNN 
b. kMER provides a good representative of the training 

samples; it makes the PNN classifier more robust in the 
presence of noise in data. 

c. the selection of the “smoothing parameter” of the original 
PNN is automated; in contrast to other optimization 
techniques, which need to be tuned using the trial-and-
error [22] or cross-validation methods [23]. 

Since kMER allocates a kernel at each neuron weight, 
instead of at each input sample such as the GTM algorithms 
[24], it can go beyond the Parzen-window technique that 
utilizes fixed radii kernels.  This leads to variable kernel 
estimation for non-parametric density estimation.  The process 
of the hybrid algorithm is shown in Figure 4. 
 

 
Fig. 4  The proposed kMER-PNN model 

C.  An Example 
The following example aims to demonstrate the capability 

of kMER to produce topographic maps and its applicability in 
the proposed hybrid architecture. The study followed the 
procedure used in Herbin and co-workers [25].  A data set of 
three equally probable Gaussians with M = 900 and centered 
at (-0.4,-0.3), (0.4,-0.3) and (0.0,0.3) in the unit square [1,1]2, 
with the standard deviations all equal to 0.2 was first 
generated.  The distribution of the generated data samples is 
shown in Figure 5. 

In the experiment, we employed kMER with an N = 24x24 
planar lattice, and the neighborhood function and random 
weight and radius initialization procedures as suggested 
before.  All samples M are used to train the map.  The RF 
region and the weight centers obtained for rρ = 1 are shown 

in Figure 6.  For comparison, we generated another map by 
utilizing the standard Self Organizing Map (SOM) using the 
SOM Toolbox [26][27].  The SOM and kMER projected maps 
are shown in Figure 7. 

 

 
Fig. 5 Scatter plot of three times 300 samples drawn from three 
Gaussian distribution with “+” as the center of each Gaussian 

 
Fig. 6 Prototype vectors and RF regions distribution obtained with 

kMER for rρ = 1 and after 2000 training epochs 

 
Fig. 7 Prototype vectors distribution obtained with SOM. Since SOM 

does not provide RF regions, all circles shown are of equal radii 
(σ = 0.02) and serve only for visualization purpose 

1) Visualization of clusters and borders: Humans tend to 
notice phenomena in visually displayed data precisely [28].  
By inspecting Figure 6 and Figure 7, for instance, one can 
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observe three distinct clusters in the prototype vectors 
distribution, which are also similar with the original 
distribution of the sample data as depicted in Figure 5.  
However, when comparing both Figures 6 and 7, in addition 
to cluster information, the circles of different radii shown in 
the distribution obtained with kMER provide additional 
insight into the input sample density information. 

Displaying the best match unit (BMU) of each data sample 
on the map provided another visualization method.  The 
minimum Euclidean distance (minEuC) between each data 
and the neurons determines the BMU (winning neuron).  For 
every BMU of each data, the class of the BMU is labeled 
based on the data label.  Figures 8 and 9 show the labels 
obtained from the training data set and these labels provided 
another obvious distinction of the various regions or cluster 
borders on the map.  Comparing both figures, it is found that 
SOM (Figure 9) produces much more “dead” units than the 
kMER model (Figure 8).  These dead units do not sufficiently 
contribute to the minimization of the overall distortion of the 
map and, hence, resulting in a less ‘optimal’ usage of the map 
resources. 

 

 

Fig. 8 The neurons trained by kMER algorithm (t = 2000, rρ = 1) 
and labeled with “+”, “*” and “^” using minEuC method.  “X” 

indicates dead unit that is inactive/ unlabeled 

 
Fig. 9 The neurons trained by SOM algorithm and labeled with “+”, 
“*” and “^” using minEuC method. “X” indicates inactive/unlabeled 

dead units 

2) Classification performance: Classification errors occur 
due to the overlapping of the Gaussian distributions.  As for 
the 900 input samples, the error rate of kMER-PNN is found 
to be the lowest (3.45% or 31 misclassifications).  Herbin’s 
method produced an error rate of 5.89% (53 
misclassifications), and for the Bayesian approach, it was 
5.43% (49 misclassifications) [25].  The error rate for the 
hybrid SOM-PNN algorithm is 6.80% (61 misclassifications) 
with 1.0=σ . 

III. EVOLUTIONARY COMPUTATIONAL SEARCH 
Humans, by and large, do not behave like intuitive 

statisticians [29], that is, they do not follow the principles of 
probability theory in judging the likelihood of uncertain 
events.  Instead, we use judgmental heuristics (mental 
shortcuts) to compute subjective probabilities.  Decision 
makers evaluate the probability of an event according to how 
similar that event is to its “parent population” and/or 
according to the degree to which the event reflects the salient 
features of the process by which it was generated [30].  In 
other words, we think events are more “likely” when they are 
similar to our expectations or preferences.  Based on this 
argument, a more meaningful decision support system should 
therefore be able to provide opportunities for humans to 
incorporate their subjective judgments in searching alternative 
solutions through the decision-making process. 

The Evolutionary Computation (EC) is a biologically 
inspired general computational concept that uses population-
based searching algorithm and outputs multiple candidates, as 
system outputs.  The Genetic Algorithm (GA) [31] is one of 
the typical paradigms uses the concept of EC to perform the 
search and optimization based on multiple searching points or 
solutions in the problem space.  GA usually represents 
solutions using the chromosomes with bit coding (genotype) 
and searches for the better solution candidates in the genotype 
space using GA operators.  Figure 10 shows the flow of data 
representation in the GA process.  The possible solutions are 
expressed in bit code (genotype) and decoded to the values 
(phenotype) used in finding solutions for the application task.  
The population of possible solutions is applied to the 
application task and evaluated the results.  These results 
(fitness values) are then used to select the parent solutions that 
determine the next searching points. The GA operators 
(crossover and mutation) are applied to generate the offsprings 
in the next generation, and this process iterates until the GA 
search converges to the required searching level.  
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Fig. 10  The flow of data in the GA process (adapted from [32]) 
 
In Interactive Evolutionary Computation (IEC) [33], the 

roles of EC/GA and a human user are integrated; the GA 
performs the searches while the human user evaluates the 
result. In other words, human user replaces the fitness 
function. However, to reduce human psychological and 
physical fatigue during the searching process, the concept of 
active user intervention has been incorporated.  Visualized 
IEC [34] is proposed in this case to accelerate convergence 
when searching for a global optimum by combining the 
different capabilities of the GA and humans.  The GA using 
its operators (e.g. selection, mutation and crossover) performs 
sound systematic search in the n-dimensional space while 
human visualizes and performs global search in a mapped 2D 
space.   

In this work, kMER produces a topological map that serves 
as the visualized 2D search space.  This 2D space helps users 
to estimate a rough global optimum position in the space and 
uses the position as a new elite individual [34].  In addition, 
use of hybrid kMER-PNN provides prediction of target class 
probabilities that can further give clue on the possibility of 
achieving convergence.  This clue is important since in a 
decision-making process, humans continue to collect 
additional information until they reduce their subjective 
uncertainty below some acceptable point [35].  Indeed, the 
inclusion of active user interaction in EC together with other 
supports (i.e. visualization, classification, and prediction) has 
helped reveal the decision-making process, which enables the 
incorporation of humans’ subjective judgments into the 
decision-making process.  

IV. APPLICATIONS 
The following section illustrates the applicability of the 

proposed architecture in two case studies: (i) a pen-based 
handwritten digits recognition dataset (to demonstrate the 
feasibility of the proposed architecture); (ii) a real medical 
decision support task of diagnosing liver diseases (to 
demonstrate the applicability of the proposed architecture to 
real-world problems). 

A.  Pen-based handwritten digits recognition 
The simulated 8 points (16 attributes comprising x and y 

coordinates of digits) pen-based handwritten digits 
recognition dataset [36], obtained from the UCI repository of 
Machine Learning Databases, was employed to evaluate the 
visualization capability of the kMER algorithm. The algorithm 
used a 24x24 planar lattice, and the initial weights with 16 
attributes were randomly chosen from the uniform distribution 
of (0, 1].  The learning rate was fixed at η = 0.001 with ρ =1, 
and the maximum batch learning time was set to 1000 epochs.  
Figure 11 shows the topology-preserved maps generated by 
the algorithms. The class of the BMU was used to label the 
grid units belonging to digits 0 to 9 (10 classes).  It is obvious 
that kMER is able to provide visualization of the cluster 
boundaries.  

Figure 13 shows an example of the output for 3 generations 
of IEC searches. The input sample of this example was 
displayed on the top left-hand side of the figure. The hybrid 
kMER-PNN provided the probabilistic prediction of the input 
sample class, which was 94.83% as digit ‘5’ and 3.92% as 
digit ‘8’.  The results show how visualization and probability 
prediction were embedded into the system. 

 

 
Fig. 11 Visualization of the pen-based handwritten digits data set 

generated using kMER 
 

 
Fig. 12 Topographic map with shaded grids to reveal the 

interactive EC search process 
 
Eight cases were retrieved from the dataset in the first 

generation of EC.  Based on the probability prediction values, 
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the class with the highest percentage was determined.  Three 
most related cases from this class and five related cases from 
other classes were retrieved.  All these cases were selected 
based on the shortest Euclidean distance from the input 

sample.  Based on these eight displayed cases, the user could 
use the vertical scroll bar at the side of each window to 
subjectively evaluate each case.  The higher a bar was 
adjusted, the higher the fitness value of the particular case.    

 

 
Fig. 13  The output of the IEC searches from generation 1 to generation 3 

 
After providing the fitness values, the system would then 

display the next generation results based on EC.  This 
generation would retrieve cases that were of even a closer 
match to the user’s judgments.  In the above example, output 
of the third generation could further verify the earlier 
probabilistic prediction that the digit was ‘5’.  This is because 
in the first two generations, the user had provided higher 
preference for cases that showed similarity to digit ‘5’.  
However, through the interactive search, similar input sample 
could also generate different outputs in later generations if the 
user had provided a higher preference for cases other than 
digit ‘5’.  Such outputs had revealed the related cases from the 
dataset to the user. 

Visualization generated in Figure 12 had also revealed the 
interactive EC search process.  The shaded grids represented 
the distribution of cases retrieved from each generation of EC 
searches.  The shading intensity of these grids showed the 
fitness values, in which the darkest grids represented cases of 
the highest fitness values.  Such visualization enabled the user 
to perceive their preference throughout the interactive process.  
Existence of convergence areas, such as the one shown in 
Figure 12, could most probably increase the certainty of the 
decision made. 

B.  Liver Diseases Diagnosis 
The liver is a complex organ with many vital roles [37].  

The liver stores fuel for the body (produced from sugars), and 
it is involved in the processing of fats and proteins.  Bile 
produced by the liver is involved in the digestion and 
absorption of fat in the intestines. The liver also makes 

proteins that are essential for blood clotting, and it helps 
remove poisons and toxins from the body.  Although the liver 
is an important organ, liver diseases are one of the commonest 
causes of morbidity and mortality among hospital patients 
[38].  These patients suffer from the risk of progressive liver 
damage and neoplastic transformation.  Thus, regular follow-
up of these patients, which usually include performing Liver 
Function Tests (LFTs), is essential. 

LFTs are a group of blood tests that measure substances in 
the blood that reflect whether the liver has been injured and 
the extent of the injuries [39][37]. LFTs include tests for 
bilirubin, a breakdown product of hemoglobin, and ammonia, 
a protein by-product that is normally converted into urea by 
the liver before being excreted by the kidneys.  LFTs also 
commonly include tests to measure levels of several enzymes, 
which are special proteins that help the body breaks down and 
metabolises other substances. Enzymes that are often 
measured in LFTs include alanine aminotransferase (ALT), 
aspartate aminotransferase (AST) and alkaline phosphataste 
(ALP).  

The process of identifying the type of liver diseases in 
patients requires knowledge and experience. Indeed, 
diagnostic problem solving in a medical domain is a primary 
example of decision making under uncertainty.  Diagnostic 
problems are often based on more than one item of data 
because it is highly exceptional for a single symptom or 
measurement to be pathologically significant to one disease 
without any associations with others.  In the case of 
diagnosing liver diseases, besides considering historical data, 
symptoms and other signs through examination, the levels of 
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the range of substances revealed through the LFTs also aid in 
the differential diagnosis of liver disease and injury, and to 
help monitor response to treatment.  In other words, such 
diagnosis involves both objective and subjective 
considerations. 

Clinicians and doctors who make such decisions often 
proceed by assigning, probably unconsciously, different 
weights to different data items, and then choose the most 
probably prediction [40].  However, many different outcomes 
may correspond to identical set of data or, conversely, distinct 
sets of data may point to the same disease.  Moreover, some 
data items may be noisy or imprecise, making the whole 
diagnostic process probabilistic in nature.  These factors can 
often result in an overall degradation of diagnostic accuracy 
by humans. An automated decision support system will 
potentially improve the objective judgments in such a 
diagnostic process.  However, as both objective and subjective 
considerations are involved in the diagnosis of liver diseases, 
an interactive human-computer decision support system is 
foreseen to be more advantageous because both considerations 
can be incorporated into the decision-making process.  

1) Experiments:  The study included a total number of 139 
patients of Timberland Medical Centre, Kuching, Sarawak, 
Malaysia.  Information on the LFTs was retrieved from the 
patients’ record.  The identification of different types of liver 
disease categories (either Normal, Hepatitis Carrier, Chronic 
Hepatitis, or Cirrhosis) for each of the patients was made by 
the gastroenterologist involved in the patients’ care.  Seven 
variables were used, i.e., total bilirubin (T.Bil), total protein 
(T.Pro), alanine aminotransferase (ALT), albumin (Alb), 
aspartate aminotransferase (AST), globulin (Glb), and alkaline 
phosphatase (ALP).  Besides, another 400 (100 cases for each 
category) simulated records were added into the dataset.  
These simulated records were generated using Gaussian white 
noises based on the means and variances for each variable of 
each category.   

Figure 14 shows a screenshot of the interface of the 
decision support system.  Basically, the interface consists of 
three main components.  The first component enables a user to 
input the values of the seven variables obtained from the 
results of the LFT of a particular patient.  Once the input 
values are submitted, the system provides visualization of the 
position of the input data (winning neuron) on the 2D map, 
which is projected using the kMER algorithm.  This position 
provides valuable information on the category of liver disease 
the patient might suffer from.  If the input fell on the border of 
two different clusters, the patient might be diagnosed as either 
normal or a hepatitis carrier.  The system also provides 
information on the number of related cases for each category 
that are within the neuron (4 Normal cases and 1 Hepatitis 
carrier case in this example). 

Use of the hybrid kMER-PNN model also enabled the user 
to estimate the probability density function from the historical 
dataset.  The probabilistic prediction of the category the 
patient might fall into was shown in percentage.  The high 
percentage for both Normal (45.9%) and Hepatitis carrier 

(30.2%) once again proved the overlapping of these two 
categories.  So far, this system has demonstrated the benefits 
of embedding visualization and probability prediction into the 
decision-making process. 

Figure 15 illustrates another interface of the system that 
provides visualization for active user interaction and 
intervention in EC.  User intervention in EC search aimed to 
accelerate convergence, which subsequently would lead to the 
decision or solution of problem by providing similar or related 
cases based on humans’ judgments.  Eight cases were 
retrieved in the first generation of EC.  Based on the 
probability prediction values, the category with the highest 
percentage was determined.  Five most related cases from this 
category and three related cases from each of the other 
categories were retrieved.  All these cases were selected based 
on the shortest Euclidean distance from the patient’s data, 
which was input earlier by the user. 

 

 

Fig. 14  An interface that provides visualization and probability 
prediction 

 

 

Fig. 15  An interface that provides visualization for active user 
interaction and intervention in EC 
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In addition to the information (values of 4 variables, 
probability prediction) displayed in each window, the user 
could retrieve other patient’s information for each case, which 
would be useful in assisting his/her decision.  Based on this 
information, the user could then use the vertical scroll bar at 
the side of each window to subjectively evaluate each case.  
The higher a bar was adjusted, the higher the fitness value of 
the particular case. After providing the fitness values, the 
system would then display the next generation results based 
on EC. This generation would retrieve cases that are of even 
closer match to the user’s judgments. 

The right side of the interface displayed the kMER map.  
The bars represent the distribution of cases retrieved from the 
previous and current generation of EC searches, in which 
these cases were mapped from n-D space to a 2D space.  The 
shading of the bars also showed the fitness values where the 
darkest bars represented cases of the highest fitness values. 
Such visualization helped the user to roughly estimate a global 
optimum position in the 2D space. 

The user could also select any other grids in the 2D space, 
in which he/she would most probably select the one with a 
high fitness value.  The chosen grid would then become a new 
elite case and the case with the lowest fitness value in the 
current generation of EC population would be replaced with 
this chosen case.  The EC mated and created an offspring 
using the parent or current generation population to include 
the newly added case. Indeed, the opportunity for the user to 
select case to be incorporated into the EC would accelerate the 
EC convergence, as user would often include cases that were 
most related to the solution of the problem based on his/her 
subjective judgments [34]. 

V.   SUMMARY 
In summary, this paper has proposed a new architecture for 

developing interactive decision support systems that integrate 
human and the computer in a cooperative platform. The 
proposed architecture attempts to reveal the decision-making 
process by embedding various techniques, such as data 
visualization, classification, prediction, and evolutionary 
computational search to enable humans’ subjectivity to be 
incorporated into a decision support system while preserving 
the remarkable ability of computer system to process 
information objectively.  The characteristics of the proposed 
architecture have been compared and illustrated using two 
simulated datasets.  The practicality of the architecture is 
demonstrated through the successful implementation of the 
system for a real-world medical diagnostic problem, i.e., liver 
diseases diagnosis. Indeed, we believe the proposed 
architecture can also be employed by decision support systems 
of other application types.  Further work will focus on 
evaluating the effectiveness of the system for decision support 
in various domains.  In addition, an incremental learning 
system is being devised to allow the system to adapt to 
changing environments. 
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