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EEG-Based Fractal Analysis of Different Motor
Imagery Tasks using Critical Exponent Method

Montri Phothisonothai and Masahiro Nakagawa

Abstract� The objective of this paper is to characterize the
spontaneous electroencephalogram (EEG) signals of four different
motor imagery tasks and to show hereby a possible solution for the
present binary communication between the brain and a machine or
a brain-computer interface (BCI). The processing technique used in
this paper was the fractal analysis evaluated by the critical exponent
method (CEM). The EEG signal was registered in 5 healthy subjects,
sampling 15 measuring channels at 1024 Hz.

Each channel was preprocessed by the Laplacian space �ltering
so as to reduce the space blur and therefore increase the space
resolution. The EEG of each channel was segmented and its fractal
dimension (FD) calculated. The FD was evaluated in the time interval
corresponding to the motor imagery and averaged out for all the
subjects (each channel). In order to characterize the FD distribution,
the linear regression curves of FD over the electrodes position were
applied. The differences FD between the proposed mental tasks are
quanti�ed and evaluated for each experimental subject. The obtained
results of the proposed method are a substantial fractal dimension
in the EEG signal of motor imagery tasks and can be considerably
utilized as the multiple-states BCI applications.

Keywords� electroencephalogram (EEG), motor imagery tasks,
mental tasks, biomedical signals processing, human-machine inter-
face, fractal analysis, critical exponent method (CEM).

I. INTRODUCTION

AN electroencephalogram (EEG) signal is generated from
the natural currents of the billion nerve cells in a human

brain. The EEG signals are very helpful information for a
novel interfacing technology between a human and a machine
such as a brain-computer interface (BCI) [1]. The EEG signals
are measuring at the scalp surface through the electrodes or
called a noninvasive method. This channel has been providing
not only healthy peoples but also patients who are suffering
from severe motor impairments and numerous other diseases
that they cannot use any of the traditional methods but being
cognitive intact [2]. The imagination of motor movement for
real applications system can be realized by training the users
(or subjects) to control his/her brainwaves. There are many
researches proposed the EEG signals of motor imagery tasks
for helpful applications such as a robot control [3], a virtual
keyboard [4], an assistive appliance [5], and etc. However, the
most of previous works based on a binary command since
the imagination of left and right hand movement are mostly
popular tasks.

There are several theoretical-practical studies on the amount
of mental states might be used by a BCI system. However the
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most relevant issue is that the mental tasks could be clearly
differences [6]. At present, the advances in the research of
BCI systems aims to improve the information transference
rate (ITR) and a useful alternative is to implement multi-states
systems.

The event-related desynchronization (ERD) and synchro-
nization (ERS) or ERD/ERS patterns are widely used to reveal
the natural phenomenal responses in EEG signal of imaging.
There are several methods have been proposed to detect the
ERD/ERS. The method based on a power spectral density
(PSD) [7]. This technique has always been a popular method
for frequency-based extracting and classifying EEG signals.
However, the power spectrum was not able to extracts the
distinguishing features. The C3 and C4 electrode signals were
utilized for extraction of the autoregressive (AR) coef�cients
[8] and multivariate autoregressive (MVAR) model [9]. The
feature vector consisting of these coef�cients was used for
classi�cation. However, the results reveal that the method is
not suitable as features for the data set used because the
majority of AR analysis assumes the input data is linear and
stationary and to be zero mean. In [10]�[11], proposed a time-
frequency analysis of EEG signals and in [12] proposed the
new imagery tasks so that the imagination of yes/no as the
mental tasks. This technique assists the subjects not require
any of training. Next, the use of fractal dimension (FD) applied
to EEG signals and proposed to BCI systems have been pre-
viously suggested by other papers [13]�[15]. However, those
methods are applicable of using for only the applications of
binary command. For the recent reports, C. Neupera and et al.
[16] and G. Pfurtscheller and et al. [17], presented the possible
signi�cant of the kind of imagery such as kinesthetic motor
imagery, visual motor imagery, different motor imagery, etc.
They proposed the EEG single-trial classi�cation the imagery
of different motor imagery tasks. The linear classi�cation with
electrode position at C3 and C4 were placed on a sensorimotor
area. This method shows the ERD/ERS response according to
the imaginary of tasks. However, the method based on two
electrodes position it is not suf�cient to reveal the hidden
information of mental tasks.

In this paper, we propose a possible improvement for the
problem of binary communication by increasing the number of
mental tasks up to four, however, so that we may af�rm that the
processing method is applicable to multi-states BCI systems,
the differences between the proposed mental tasks should be
quanti�ed and evaluated for each experimental subject. The
mental tasks proposed in this paper have not been previously
analyzed through fractal techniques, the analysis of the mental
tasks proposed through the fractal analysis.
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The paper proceeds as follows. Section 2 the proposed
method is presented. And the experimental results in Sect. 3,
discussed in Sect. 4. Finally, the paper is concluded in Sect. 5.

II. METHODS

A. EEG signals acquisition and experimental paradigm
The electrodes were placed according to the 10-20 interna-
tional system as depicted in Fig. 1.

T4

T5

Pz

P4

C3T3

P3
T6

Cz C4

F3
F7

A1

O2O1

Fz

F8
F4

A2

Fp
1

G
Fp

2

Nasion

Inion

Fig. 1. The electrode positions of 12 channels were placed on the scalp for
EEG signal acquisition is marked in black circles. The grounding electrode is
marked in gray circle and the referencing electrode is marked in dotted circle.
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Fig. 2. One-trail epoch for time sequence of the experiment with the
indicators on a monitor.

In the experiment we use a multiple channel ampli�er
(MEG-6116; Nihon Kohden, Tokyo, Japan), analog-to-digital
converter (PC-CARD-DAS16/16; Measurement Computing,
MA, USA), and the EEG electrode paste (Z-401CE; Nihon
Kohden, Tokyo, Japan) is used for impedance reducing. The
EEG signals were digitized at 1024 samples/sec; resolution 16
bits/sample; and signals were analog bandpass �ltered between
1.5 and 100 Hz. We have used the notch �lter to protect
the artifacts at 50 Hz cut-off. The experimental paradigm we
have tested with three males (M1, M2, and M3) and two
females (F1 and F2). Their age between 21-32 years old
(mean age 26.8 years, SD 4.3); we collect the 80-trials data
per subject (20-trials/mental task). They sat in a comfortable
chair in an electrically shielded room and watching a 15�
monitor from a distance of about 1.0 meter. Four mental tasks

were given subjects perform they consist of 1) Imagine to
left �nger-index movement; 2) Imagine to right �nger-index
movement; 3) Imagine to tongue movement; and 4) Imagine
to feet movement.

We set the one-trial epoch of time period is 8 seconds
throughout the experiment as depicted in Fig. 2 also the time
period of experiment was divided into three periods. First
period, the subjects have to relax with eyes-opened which this
period is represented by the blank screen. Second period, the
subjects are preparing to perform the tasks which this period
the cross is displayed. Third period, the subjects perform the
tasks with eyes-opened which this period is represented by the
indicators. To indicate which tasks will be perform, we have
use the several kinds of indicator as the left arrow for left
�nger-index movement, the right arrow for right �nger-index
movement, the down arrow for feet movement, and the dash
sign for tongue movement.

B. Preprocessing
Firstly, the raw EEG signals were recorded from the subjects
should prepare to preprocessing. For preprocessing that EEG
patterns can be detected with surface Laplacian (SL) �ltering
than with the unprocessed raw potentials [18]. The SL �ltering
reduces considerably the spatial blur of the recorded EEG
signals due to the head as a volume conductor. In addition,
the recorded EEG signals require the evaluation of the second
order spatial derivative of the scalp surface potential that is
an estimation of the radial neural current density following
through the human skull towards the cortex. The SL �ltering
of a potential �eld can be calculated by using two dimensional
second derivative operator is given by:

Ls = −∇2φxy = −
{

∂2φ

∂x2
+

∂2φ

∂y2

}
, (1)

where φ is a function of a three dimensional space, x, y, z,
in case of scalp potential. Since the distances of the nearest
electrodes are small in relation to the curvature of the head, a
planar geometry, φxy, can be assumed as a good approximation
of the local surface. In practice, the SL �ltering at the electrode
can be numerically estimated by the weighted summation of
potentials at the electrode and its nearest neighboring surround
by Hjorth's method [19]. In this paper we have modi�ed the
SL �ltering that appropriated with the electrode positions as
follows:

x̂i = xi − 1
M

∑

j∈Ni

xj , (2)

where x̂i is the output signals from SL �ltering, xi is the
raw EEG signals at i-th channel, Ni is an index set of the
neighboring channels, and M is the constant values where
M = 2 if the current channels are F7, F8, T5, and T6, and
M = 3 if the current channels are F2, F3, Fz, T3, T4, P3, P4,
and Pz, and otherwise M = 4.

C. Fractal evaluation based on critical exponent method
The fractal concept has been widely used to describe the
objects in space since it has been found to be useful for
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analysis of biological signals [20][21]. The time series with
fractal nature to be describable by the functions of fractional
Brownian motion (fBm), for which the fractal dimensions can
easily be set. The fBm with Hurst function, H , has been
described in [22]. This paper proposed the fractal dimension
evaluation based on the critical exponent method (CEM) [23].
The power spectral density (PSD), PH(ν), of observed signals
in the frequency domain is determined as:

PH(ν) ∼ ν2H+1 = ν−β , (3)

In the CEM, the moment Iα of the PSD is determined as:

Iα =
∫

PH(ν)ναdν, (−∞ < α < ∞), (4)

We will consider the limited frequency bands and substitute
Eq. (3) in Eq. (4) thus the equation was given as:

Iα ∼
∫ Ω

1

να−βdν =
1

α− β + 1
(Ωα−β+1 − 1), (5)

=
2
U

exp
(

U log Ω
2

)
, (6)

where α is the moment exponent, Ω is the frequency variable
which was normalized to the lower bound of the integration
region as 1, and let U = α−β+1 . In the CEM, the condition
of U = 0 is satis�ed for the moment of critical exponent as
α = αc at which the value of the third order derivative of
log Iα with respect to is zero as the following equation:

d3 log Iα

dα3
=

I ′′′α I2
α − 3I ′′αI ′αIα + 2(I ′α)3

I3
α

, (7)

Finally, from this value of αc, β = αc − 1 and the estimated
fractal dimension is given as:

D = 2− αc

2
. (8)

where αc is the critical exponent value. Figure 3 shows the
determination of the critical exponent value of the traditional
fBm signal with H = 0.07 (or D = 1.930) and the sample
length is 1,024 points. The CEM can evaluate its fractal
dimension was D = 1.9320.
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Fig. 3. Determination method of the critical exponent value. (a) Traditional
fBm signal with H = 0.07. (b) Third order derivative of the logarithmic
function and the zero crossing point.
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Fig. 4. Typical example of the SL �ltered EEG signals and its fractal
dimension over time. The fractal dimension was estimated based on CEM
with TDFD.

D. Time-dependent fractal dimension
The EEG data contain the �uctuations concerned with fre-
quency, amplitude, self-af�ne property, chaotic behavior, etc.
Therefore, if we divide the whole time-sequential data into
several short time intervals and measure the degrees of free-
dom of the �uctuations inside these time-intervals, we can
observe the change in the degree of �uctuations with respect
to time. These �uctuations are effectively characterized by the
fractal dimensions. In this paper, we will approach the CEM
in order to evaluate the fraction dimensions and called the
time-dependent fractal dimension (TDFD). In practice, we will
divide the EEG data that obtained from the SL �ltering into
short time intervals by a windowing with a window function.
We then evaluate the fractal dimensions of the points inside
this windowing. Next, we move this window by n points (∆t)
and again evaluate the fractal dimension of moved window.
By repeating this process throughout the whole EEG data, we
can observe the change in the fractal dimension with respect to
time. In the case of TDFD, the horizontal axis is the window
index and vertical axis is the fractal dimension value. Figure
3 shows a typical example of the EEG signal and its fractal
dimension through the experiment.

III. EXPERIMENTAL RESULTS

We set up the acting stimuli in the experiment due to help
subject can easily imagines the desired tasks. The acting
stimuli for each of tasks shown as follows:

1) Feet movement: imagine to left-right moving.
2) Left �nger-index movement: imagine to repeating mouse

click by using left �nger-index of left hand side.
3) Right �nger-index movement: imagine to repeating

mouse click by using right �nger-index of right hand side.
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TABLE I
THE AVERAGE VALUES OF FRACTAL DIMENSIONS AT EACH TASKS FROM

SUBJECT SM1.

Channel FT-MI LF-MI RF-MI TG-MI
F7 1.7550 1.7425 1.7528 1.7519
F3 1.8053 1.7381 1.7613 1.7966
Fz 1.8356 1.7541 1.8062 1.7731
F4 1.7891 1.705 1.7247 1.795
F8 1.9444 1.7975 1.8622 1.9038
T3 1.8606 1.7478 1.7925 1.8062
C3 1.8519 1.7634 1.8181 1.7659
Cz 1.7953 1.7394 1.7997 1.7559
C4 1.8550 1.7506 1.785 1.7641
T4 1.9194 1.8122 1.7875 1.8463
T5 1.8525 1.8147 1.7931 1.8091
P3 1.7866 1.7594 1.7297 1.7469
Pz 1.8259 1.7469 1.7888 1.7369
P4 1.7931 1.7241 1.7438 1.7203
T6 1.8816 1.8716 1.8303 1.8700

Averaged S.D. ±0.0116 ±0.0102 ±0.0153 ±0.0104

TABLE II
THE AVERAGE VALUES OF FRACTAL DIMENSIONS AT EACH TASKS FROM

SUBJECT SM2.

Channel FT-MI LF-MI RF-MI TG-MI
F7 1.7869 1.6906 1.7147 1.7437
F3 1.8338 1.7044 1.7163 1.8131
Fz 1.8863 1.7159 1.7569 1.8053
F4 1.8025 1.6747 1.6984 1.765
F8 1.9647 1.7766 1.7328 1.8266
T3 1.8791 1.7672 1.765 1.8569
C3 1.8909 1.7663 1.7622 1.8547
Cz 1.8556 1.7097 1.7528 1.8078
C4 1.9056 1.7334 1.7284 1.7878
T4 1.8728 1.7766 1.7769 1.8438
T5 1.9372 1.8038 1.7759 1.8641
P3 1.8203 1.7112 1.7306 1.7647
Pz 1.9075 1.7541 1.7316 1.7987
P4 1.8053 1.6981 1.7019 1.7253
T6 1.9206 1.8322 1.8228 1.8584

Averaged S.D. ±0.0108 ±0.0110 ±0.0124 ±0.0102

4) Tongue movement: imagine up-down moving.
In the experiment, the EEG signals during imagined move-

ment (4 sec to 8 sec) in each of trial were processed (or 4,096
points.) To evaluate the fractal dimensions respect to TDFD,
we set a window function is a rectangular type, window size =
1,024 points (1 s), moving window with intervals = 128 points
(62.5 ms).

Therefore, the time resolution to evaluating of the fractal
dimension was 62.5 ms. The number of obtained points can
determine from NFD = b(L− Lw)/∆tc + 1 where L is a
sample length of observed EEG data, Lw is a window length,
and ∆t is an interval. Thus we will obtain 25 points of fractal
dimension values per channel over the imagination period.
The each of windowed segments were evaluated in frequency
domain through the Lw-points fast Fourier transforms (FFT)
to determine the critical exponent value of the CEM as de�ned
in Eq. 7. Next, the abbreviations will be used for convenient
representation throughout the section as follows: imagination
of feet movement (FT-MI); imagination of left �nger-index
movement (LF-MI); imagination of right �nger-index move-
ment (RF-MI); and imagination of tongue movement (TG-MI).

TABLE III
THE AVERAGE VALUES OF FRACTAL DIMENSIONS AT EACH TASKS FROM

SUBJECT SM3.

Channel FT-MI LF-MI RF-MI TG-MI
F7 1.7709 1.7212 1.7078 1.7281
F3 1.8225 1.8091 1.7131 1.8006
Fz 1.8503 1.8653 1.7322 1.7397
F4 1.7897 1.8103 1.6747 1.7941
F8 1.9300 1.8047 1.7706 1.8381
T3 1.8381 1.8331 1.7631 1.8369
C3 1.8478 1.8597 1.745 1.8116
Cz 1.8213 1.7963 1.7288 1.7209
C4 1.835 1.8266 1.7441 1.7222
T4 1.9431 1.8194 1.7762 1.9344
T5 1.8719 1.9303 1.7669 1.8344
P3 1.8000 1.7806 1.7031 1.9109
Pz 1.8219 1.7697 1.7209 1.8131
P4 1.7978 1.7144 1.7294 1.6950
T6 1.8734 1.9119 1.7938 1.8406

Averaged S.D. ±0.0125 ±0.0132 ±0.0121 ±0.0144

TABLE IV
THE AVERAGE VALUES OF FRACTAL DIMENSIONS AT EACH TASKS FROM

SUBJECT SF1.

Channel FT-MI LF-MI RF-MI TG-MI
F7 1.7178 1.6934 1.7503 1.6331
F3 1.7122 1.8019 1.8122 1.6231
Fz 1.7441 1.7644 1.7959 1.6584
F4 1.7022 1.8119 1.7806 1.6347
F8 1.7919 1.8641 1.8331 1.7034
T3 1.8106 1.8213 1.8056 1.7597
C3 1.7775 1.7481 1.7625 1.7378
Cz 1.7769 1.6994 1.7381 1.7147
C4 1.8000 1.7112 1.7428 1.7206
T4 1.7875 1.8600 1.8119 1.7797
T5 1.8341 1.8091 1.7819 1.8756
P3 1.7625 1.7503 1.7072 1.7953
Pz 1.7628 1.7222 1.7025 1.8044
P4 1.7741 1.6797 1.7412 1.7403
T6 1.8438 1.8809 1.8347 1.9144

Averaged S.D. ±0.0112 ±0.0131 ±0.0107 ±0.0105

TABLE V
THE AVERAGE VALUES OF FRACTAL DIMENSIONS AT EACH TASKS FROM

SUBJECT SF2.

Channel FT-MI LF-MI RF-MI TG-MI
F7 1.7381 1.6609 1.6866 1.715
F3 1.8016 1.6841 1.6612 1.8719
Fz 1.8319 1.7234 1.7294 1.8441
F4 1.7672 1.6528 1.6781 1.8059
F8 1.8634 1.715 1.7916 1.8781
T3 1.8394 1.7416 1.7594 1.8856
C3 1.8172 1.7572 1.7197 1.9591
Cz 1.8113 1.7569 1.7072 1.8322
C4 1.8091 1.7113 1.7528 1.8522
T4 1.7903 1.7466 1.8166 1.8872
T5 1.8606 1.7934 1.7988 1.9863
P3 1.8225 1.7488 1.7450 1.8419
Pz 1.7581 1.7653 1.7216 1.8334
P4 1.7369 1.6869 1.6988 1.7716
T6 1.8806 1.7791 1.8444 1.9894

Averaged S.D. ±0.0147 ±0.0124 ±0.0113 ±0.0128
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Fig. 5. Linear regression curves of the four motor imagery tasks over the
electrodes position, subject SM1.

1.6

1.65

1.7

1.75

1.8

1.85

1.9

1.95

2

F7 F3 Fz F4 F8 T3 C3 Cz C4 T4 T5 P3 Pz P4 T6

Linear (FT-MI) Linear (TG-MI) Linear (LF-MI) Linear (RF-MI)

Fig. 6. Linear regression curves of the four motor imagery tasks over the
electrodes position, subject SM2.
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Fig. 7. Linear regression curves of the four motor imagery tasks over the
electrodes position, subject SM3.
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Fig. 8. Linear regression curves of the four motor imagery tasks over the
electrodes position, subject SF1.
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Fig. 9. Linear regression curves of the four motor imagery tasks over the
electrodes position, subject SF2.

At the experimental paradigm the fractal dimension during
imagination of motor movement was evaluated (4 to 8 s) thus
the TDFD at all 25 points were also evaluated. The reason
is that, its fractal dimensions can reveal the patterns change
according to the complexity of natural EEG signal property.
The average values of fractal dimension and standard deviation
of each channel from all subjects are shown as Table I. to
Table V. Since each subject will present different EEG patterns
during the motor imagery tasks. As it is mentioned by Curran
et al [24], the strategies used to produce a determined motor
imagery are show separately, therefore the FD characteristics
of the EEG will be different. To present it, the linear regression
curves were applied as shown in Fig. 5 to Fig. 9.

IV. DISCUSSIONS

As the obtained results, in Fig. 5 to Fig.9, the subject
SM1 shows that the most of FD distribution of FT-MI higher
than other mental tasks over whole positions. Moreover, in
this study shows that the trend of FD during FT-MI of the
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participated three males (SM1, SM2, and SM3) produce higher
than other mental tasks since the FD was about 1.8 to 1.9. For
the subject SF1 as shown in Fig. 8 produced the high FD at
only on the central area of the brain (Cz, C4, and T4). The
subject SF2 show the FD of FT-MI lowers than only TG-MI.

For the FD of LF-MI and RF-MI their linear regression
curves are closely same shape. However, we can determine
the different FD characteristics by the areas such as the frontal
area (F7, F3, Fz, F4, and F8) of all subjects produces the FD
of RF-MI higher than LF-MI since the range FD minimum at
1.69 to maximum at 1.84.

And for the FD of TG-MI higher than other metal tasks
only subject SF2. Since the three males produced the FD of
TG-MI was about 1.8 and always lower than the FD of FT-MI
all over area of the brain. The subject SF1 shows the FD lower
than other mental tasks at the frontal and central areas.

The fractal dimension evaluation based on CEM is proposed
to be useful information for the analysis of time dependence of
data in which the fractal dimension changes in imagined EEG
signals. Since in the human brain is a highly complex nonlinear
system which shows chaotic dynamics. The human EEG
possesses a self-af�ne property with a fractional dimension
corresponding to a chaotic behavior of the neurons that time
series have a fractal or multifractal temporal structure [12],
[21]. A higher fractal dimension indicates a more complicated
structure of EEG signals, or the quantity of information
embodied in a pattern. Moreover, there is the evident of
fractal dimension of mental tasks as imagined movements were
existed.

V. CONCLUSIONS

The fractal analysis of EEG signals of different motor
imagery tasks has been proposed. We evaluated its fractal
dimension based on CEM with TDFD. The critical exponent
value, which is determined by CEM, characterizes the self-
af�ne property of the EEG signal and had direct relation
to the electrodes position. Therefore, the fractal dimensions
were effective for classifying the motor imagery tasks. The
obtained result of the proposed method is a substantial fractal
dimension in the EEG signal of motor imagery tasks. More-
over, the method described in this paper can be considerably
utilized both the EEG-based classi�cations and the multiple-
commands in the BCI applications.
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