
International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:8, No:9, 2014

1201

A Hybrid Heuristic for the Team Orienteering
Problem

Adel Bouchakhchoukha, Hakim Akeb

Abstract—In this work, we propose a hybrid heuristic in order to
solve the Team Orienteering Problem (TOP). Given a set of points (or
customers), each with associated score (profit or benefit), and a team
that has a fixed number of members, the problem to solve is to visit a
subset of points in order to maximize the total collected score. Each
member performs a tour starting at the start point, visiting distinct
customers and the tour terminates at the arrival point. In addition,
each point is visited at most once, and the total time in each tour
cannot be greater than a given value. The proposed heuristic combines
beam search and a local optimization strategy. The algorithm was
tested on several sets of instances and encouraging results were
obtained.

Keywords—Team Orienteering Problem, Vehicle Routing, Beam
Search, Local Search.

I. INTRODUCTION

VEHICLE Routing Problems (VRP) are very well studied
in the literature because they have many practical

applications in Industry and Logistics. In a standard VRP, we
have to visit a given set of points (vertices) called customers
by using one or more vehicle(s). The objective is to optimize
one or more objective(s).

The most known vehicle routing problem is of course the
Traveling Salesman Problem (TSP) [10] that consists to visit
a set of customers (each one must be visited exactly once) by
using one vehicle. The objective in TSP is to minimize the total
distance traveled. This is equivalent to compute a Hamiltonian
circuit in a complete graph (the shortest path that visits each
node of the graph exactly once). In some circumstances, the
customers have to be visited during a given period of time
(time window), the corresponding problem is called “Vehicle
Routing Problem with Time Windows” (VRPTW) [7]. In
practical cases, several vehicles are used in order to serve all
the customers and the objectives to optimize are the number of
vehicles (to minimize) and the total distance that has also to be
minimized, so this corresponds to a multi-objective problem.

In some cases, a score (or benefit) is assigned to each
customer or vertex and only a subset of customers are visited
because the length and/or time are limited. The objective is
to maximize the collected scores. This situation corresponds
to a category of problems known as the Orienteering Problem
(OP) [12]. This can be seen as a combination of the TSP and
the Knapsack Problem (KP).

In this paper we study the Team Orienteering Problem
(TOP) defined by Chao et al. [5], also known as Multiple

A. Bouchakhchoukha is a PhD student at MSE Université Paris
1, Panthéon Sorbonne, 106-112 Bd de l’Hôpital, 75013 Paris, France.

H. Akeb is a Professor at ISC Paris Business School, 22 Bd du Fort de

Tour Maximum Collection Problem (MTMCP). Here we have
to determine several paths that maximize the collected scores
(or benefits), each path is bounded by a length or time. TOP
is then equivalent to an OP executed by a team, i.e., several
members or vehicles, each member has to perform a path
(or tour) of maximum collected score but not exceeding the
maximum length or time. So in TOP, we have:

• A set V = {v0, ..., vn+1} of vertices or points to visit.
Vertex v0 corresponds to the starting point while vn+1 is
the end (arrival) point. No score is associated with these
two vertices.

• A non-negative score Si is associated with each vertex
vi ∈ V, the score associated with v0 and vn+1 is equal
to 0.

• The time (or length) tij needed to go from vertex i to
vertex j is known.

• m paths P = {P1, ..., Pm} have to be performed by
m members (vehicles for example). Each path begins at
the starting point v0, visits a distinct set of points, and
terminates at the end point vn+1. Each visited vertex in
V belongs then to one and only one path.

• The time needed to perform each path Pk, 1 ≤ k ≤ m ,
denoted by T (Pk) must not exceed a fixed value Tmax

that is the same for all paths. This constraint is indicated
in (1).

T (Pk) ≤ Tmax, ∀Pk ∈ P (1)

The objective is then to maximize the sum of the collected
scores in P, the set of all paths, each path Pk ∈ P has a total
time (or length) not exceeding Tmax. Note that if the speed is
equal to one unit, then the time and the length are equivalent.
The objective associated with the collected score is indicated
in (2).

max S(P) =

m∑

k=1

S(Pk) (2)

Fig. 1 shows an example of a graph containing 13 points
(|V | = 13). The values indicate the score associated to each
vertex. The start point corresponds to the triangle � while the
end (or final) point is represented by a square �. There are
two paths to compute (|P| = m = 2). The first path P1 is
indicated in the right side of the graph and the corresponding
collected score is S(P1) = 2 + 8 + 4 + 1 = 15. Path P2 has
a score S(P2) = 2 + 7 + 8 + 3 = 20. The collected score in
the solution is then S(P) = 15 + 20 = 35.

(e-mail: adel.bouchakhchoukha@malix.univ-paris1.fr).

Vaux, 75017 Paris, France. (e-mail: hakeb@iscparis.com).

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:8, No:9, 2014

1202

Start

End

1

4

2

8

4

2

7

8

3

1

Path1

Path2

2

II. LITERATURE REVIEW

To our knowledge, the Team Orienteering Problem was first
studied by Butt and Cavalier [4] under the name of Multiple
Tour Maximum Collection Problem (MTMCP). The authors
proposed a heuristic named MAXIMP (Maximize Importance)
that is composed of four steps. The main idea of MAXIMP
is to assign weights to node pairs. This then defines a priority
list denoted by WGT that indicates the order in which the
pairs of vertices are taken in order to construct the m tours.
The term of “TOP” was used for the first time by Chao et
al. [5]. The authors described a problem where a team is
composed of m members, each member will perform a path
by starting at the start point, going through a subset of points,
and terminating at the end point without exceeding a maximum
time. A score is associated with each point and the goal is to
maximize the collected (total) score. The authors presented
a heuristic in order to solve a large variety of problems that
were generated by the authors. The instances contain from 21
to 102 points while the number of paths varies from 2 to 4. The
heuristic developed uses different tools including exchange of
two points between two paths and moving a point from a path
to another one in order to increase the collected score in the
solution. In addition, Local Search (2-opt algorithm) is used in
order to decrease the time in a path, this may allow including
new points and then increasing the collected score.

Several (meta-)heuristics were used in the literature in
order to solve the TOP. Bouly et al. [1] proposed a memetic
algorithm that is based on a hybrid genetic algorithm. Lin [11]
developed a simulated annealing based algorithm. Kim et
al. [9] proposed an augmented large neighborhood search
(LNS) for the same problem. Finally, Hu and Lim [8] proposed
an iterative three-component heuristic for a TOP with time
windows, i.e., a time window is associated with each vertex.
The reader can refer to Vidal et al. [13] that published a survey
on the different heuristics used for solving the multi-attribute
vehicle routing problems.

There also exists exact methods that solves the team
orienteering problem. For example, Butt and Ryan [3] used
an exact method based on Column Generation in order
to solve the Multiple Tour Maximum Collection Problem

(MTMCP). The method, denoted by MAXREW, is able to
obtain optimal solutions, even when the number of nodes
is large (100 nodes), but with a greater computation time.
Boussier et al. [2] proposed an exact algorithm for the TOP
based on Branch-and-Price where the authors presented also
some techniques that accelerate the search and instances with
up to 100 customers are solved.

In this paper we propose a hybrid heuristic for the TOP.
The heuristic combines beam search and a local optimization
based on the 3-opt strategy that works similarly as the
well-known 2-opt method [6]. In addition, the proposed
heuristic implements a pre-processing step that serves to
eliminate vertices that will never belong to a feasible solution.

III. A HEURISTIC FOR THE TEAM ORIENTEERING
PROBLEM

In the TOP some vertices can be eliminated because they
can never belong to a feasible solution because they violate
the time constraint. After eliminating these vertices, we obtain
set V ′ defined as follows:

V ′ = {vi ∈ V } | (tv0,vi + tvi,vn+1) ≤ Tmax (3)

Equation (3) defines then the set of vertices to take into
account in order to compute a solution for the TOP. More
precisely, if the start and end point are distinct, then vertices
in V ′ belong to an ellipse where the foci are the start point
v0 and the end point vn+1 and the length of the major axis is
equal to Tmax. Chao et al. [5] called this ellipse the “Tmax

ellipse”. When the start point is the same than the end point,
then we obtain a circle of diameter Tmax.

Below will be described the proposed algorithm that uses
two techniques:

• Beam search that serves to compute paths of maximum
score.

• A local optimization based on the 3-opt algorithm in order
to decrease the total time in the current partial solution.
This procedure is called at each step of beam search.

A. Beam Search for Computing Paths

Beam search is a tree search that computes several paths in
parallel, and the best feasible one (with the highest score) is
chosen as the final solution. This is actually an optimization
of the Best First Search since it selects, at each level of the
tree, the best ω nodes, where ω is an integer value called the
beam width.

The adaptation of Beam Search to our problem is given in
Algorithm 1 (BSCBP) that receives as input parameter the set
of vertices V ′ that belong to the Tmax ellipse. The output of
BSCBP is the set of best paths found P = {P1, ..., Pm} that
maximize the collected score.

The nodes of the current level in the tree are stored in a list
denoted by B (line 1) in the algorithm, and the offspring nodes
(created when branching from the nodes in B) are stored in
list Boff . Remember that path Pk ∈ P must start from the
start point v0, visits a subset of vertices in V ′ and ends at
vertex vn+1.

Fig. 1 An example of solution for the Team Orienteering Problem with two
paths

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:8, No:9, 2014

1203

Input: Set V ′ ⊆ V of vertices that belong to the Tmax

ellipse.
Output: The best paths found P = {P1, ..., Pm} that

maximize the collected score.
1: Let B be the set containing the nodes at a given level of

the tree;
2: Let Boff be the offspring nodes (descendants of nodes

in B);
3: for k = 1 to m do
4: η0 ← {P+ = {v0}, P− = V ′} (the root node)
5: Set η0.score← 0 and η0.time← 0;
6: Set B ← {η0} and �← 0;
7: η∗ ← η0; (the best solution found for the kth path)
8: while (B �= ∅) do
9: Branch out of each node η�j ∈ B and create the

offspring nodes Boff ;
10: �← �+ 1;
11: for each nodes η�j ∈ Boff do
12: Apply the 3-opt local optimization on the partial

path P+
j of the node in order to try to decrease

η�j .time;
13: end for
14: Remove from Boff the nodes that will violate the

Tmax constraint if adding the end point vn+1;
15: if P− = ∅ for a node η�j ∈ Boff then
16: Add vertex vn+1 (end point) to that path and

compute the total time and score;
17: if (η�j .score> η∗.score) then
18: η∗ ← η�j ;
19: Remove η�j from Boff ;
20: end if
21: end if
22: Sort nodes in Boff according to the selection

criterion ρ and keep only the max (ω, |Boff |) first
nodes, remove the other nodes from Boff ;

23: B ← Boff ;
24: Boff ← ∅;
25: end while
26: Assign to Pk ∈ P the path P+ stored in node η∗;
27: Update set V ′ by removing the vertices used in path

Pk;
28: end for
Algorithm 1: BSCBP (Beam Search for Computing the Best
Paths).

The m paths are computed sequentially by the for loop
(lines 3 – 28). For each path, instructions between lines 4 and
27 are executed. A node η� at level � in the tree contains
the following elements: the path under construction P+, the
set of vertices P− that are not yet visited, the total time T
corresponding to path P+, and finally the total collected score
S in P+. These two last parameters are designed by η�.score
and η�.time respectively.

The root node of the tree η0 is initialized at line 4 where
P+ = {v0} and P− = V ′. At line 5, the score as well as the
total time are set to 0. List B is then initialized with η0 and

the current level � is set to 0 (line 6). The best node η∗, that
contains the best solution found so far, is set to the root node
(line 7).

Computing paths is done inside the while loop that begins
at line 8. Indeed, at each level � of the tree, list B contains
the nodes corresponding to the partial paths. Branching from
node η�j = {P+

j , P−
j } ∈ B means that the next vertex to visit

will be chosen from set P−
j . So the node can generate at most

|P−
j | descendants and then the current level, that contains |B|

nodes, can generate at most
∑|B|

j=1(|P−
j |) descendants. These

offspring nodes are then stored in list Boff (line 9). After
that, the level is incremented at line 10. At line 11, a local
optimization, that is based on 3-opt, tries to rearrange the arcs
in each path in order to decrease the total time. The goal is to
be able after that to insert more vertices in a path in order to
increase the collected score (the 3-opt optimization method is
given in Algorithm 2). Then, the nodes containing non-feasible
paths are removed from Boff (line 14).

After that, if set P− is empty (line 15) in a given node
η�j ∈ Boff , then we add the last arc by connecting the last
vertex in P+ with the end point vn+1. The obtained score is
then compared to the best known one and the best node η∗ is
updated if a greater score is obtained (lines 18) and the node
is then removed from Boff (line 19).

The next step consists to filter list Boff in order to keep
only the ω best ones. This is done by sorting the nodes in
Boff , by using a given criterion ρ, from the most important to
the least important one, and then keeping the first (best) ones,
the other nodes are removed from Boff . The computational
investigation shows that the best criterion to sort the nodes is
that which chooses the nearest vertex as the next one to visit.
If there are more than one such vertices then the vertex with
the greatest score is chosen. The remaining nodes in Boff are
then assigned to B (line 23) and Boff reset to the empty set
(line 24).

The while loop stops when no branching is possible, i.e.,
when B becomes empty. Then the current path Pk is assigned
with the path P+ computed in the best node η∗ (line 26). The
last instruction (line 27) consists to update the set of vertices
V ′ by removing from it the vertices used in the last computed
path Pk.

So the output of algorithm BSCBP is the set P containing
the m best paths found. The total score corresponds to the
sum of scores in each path Pk ∈ P, k = 1, ...,m.

B. Local Search for Decreasing the Time in a Path

In order to try to decrease the total time in a path, a local
optimization is used. The method is based on the so-known
3-opt strategy given in Algorithm 2. The idea is to take three
non-successive arcs (vi → vi+1), (vj → vj+1), and (vk →
vk+1), and replace them by arcs (vi → vj), (vi+1 → vk), and
(vj+1 → vk+1) if the obtained total time in the path decreases.
This process is repeated until there is no improvement after
trying all the combinations. Note that after changing arcs, the
direction of some other arcs must be inverted.

Fig. 2 gives an example where arcs (A → B), (C → D),
and (E → F) are replaced by arcs (A→ C), (B → E), and

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:8, No:9, 2014

1204

Input: A path P of total time T (P)
Output: A path P ′ with total time T (P ′) ≤ T (P)

1: Improvement ← true;
2: while (improvement = true) do
3: Improvement ← false;
4: for each vertex vi ∈ P do
5: for each vertex vj ∈ P (j �= i− 1, j �= i+ 1) do
6: for each vertex vk ∈ P

(k �= j − 1, k �= j + 1, k �= i+ 1, k �= i− 1) do
7: if (tvi,vi+1

+tvj ,vj+1
+ tvk,vk+1

) > (tvi,vj
+tvi+1,vk + tvj+1,vk+1

) then
8: Replace arcs (vi → vi+1), (vj → vj+1) and

(vk → vk+1) by (vi → vj), (vi+1 → vk) and
(vj+1 → vk+1) respectively;

9: Improvement ← true;
10: end if
11: end for
12: end for
13: end for
14: end while
Algorithm 2: The 3-opt algorithm for decreasing the total
time in a path.

B

C

D

E

F

B

C

D

E

F
A A

(D → F). Note that some arcs are inverted in order to keep
a circuit in the path.

IV. COMPUTATIONAL RESULTS

The proposed algorithm is implemented using the C++
language and executed under Windows 7 environment on a
computer that has 2 GB of RAM and a 2.26 GHz processor.

Three sets of instances were considered, namely p1, p2,
and p3, and proposed by Chao et al. [5]. The number V of
vertices in these problem sets are 21, 32 and 33 respectively.
More precisely, the name of each instance in each set is in the
form “p[number1].[number2].[letter]” where:

- [number1] represents the group number (1, 2, or 3) in
our case.

- [number2] is the number m of members with 2 ≤ m ≤ 4.
- [letter] is an alphabetical letter that serves to identify the
Tmax value.

Instance Best Lit. BSCBP CPU time (sec)
p1.2.a 0 0 0
p1.2.b 15 15 < 1
p1.2.c 20 20 < 1
p1.2.d 30 30 < 1
p1.2.e 45 45 < 1
p1.2.f 80 80 3
p1.2.g 90 90 181
p1.2.h 110 110 1006
p1.2.i 135 135 1279
p1.2.j 155 155 1288
p1.2.k 175 175 1515
p1.2.l 195 195 1609
p1.2.m 215 215 1741
p1.2.n 235 235 2055
p1.2.o 240 240 2398
p1.2.p 250 250 5707
p1.2.q 265 265 5611
p1.2.r 280 280 7102
p1.3.a 0 0 0
p1.3.b 0 0 0
p1.3.c 15 15 < 1
p1.3.d 15 15 < 1
p1.3.e 30 30 < 1
p1.3.f 40 35 < 1
p1.3.g 50 50 1
p1.3.h 70 70 17
p1.3.i 105 100 171
p1.3.j 115 110 411
p1.3.k 135 135 746
p1.3.l 155 150 1251
p1.3.m 175 175 1366
p1.3.n 190 190 1998
p1.3.o 205 205 1820
p1.3.p 220 220 1817
p1.3.q 230 225 1808
p1.3.r 250 215 1955
p1.4.a 0 0 0
p1.4.b 0 0 0
p1.4.c 0 0 0
p1.4.d 15 15 < 1
p1.4.e 15 15 < 1
p1.4.f 25 25 < 1
p1.4.g 35 35 < 1
p1.4.h 45 45 < 1
p1.4.i 60 60 < 1
p1.4.j 75 75 2
p1.4.k 100 100 7
p1.4.l 120 120 25
p1.4.m 130 130 370
p1.4.n 155 155 533
p1.4.o 165 165 791
p1.4.p 175 175 929
p1.4.q 190 190 1175
p1.4.r 210 210 1249

Average 112.04 110.93 1248.43

So in fact, for the same problem that have the same vertices
with the same coordinates and associated scores, parameters
[number2] and [letter] serve to create several versions by
modifying value of m and the value of Tmax. For example for
problem “p1.3.a”, there are 32 vertices including the start and
end points, m = 3 and Tmax = 1.7. and in problem “p1.3.k”
we have exactly the same vertices (with the same scores) but
the value of Tmax becomes 18.3. Then, in this second version,
the paths become longer and the collected score higher.

The coordinates (xi, yi) of the vertices vi ∈ V are indicated

TABLE I
RESULTS OBTAINED ON THE 54 INSTANCES OF THE FIRST SET (P1):

|V | = 21 VERTICES

Fig. 2 An example of changing of three arcs in a path

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:8, No:9, 2014

1205

Instance Best Lit. BSCBP CPU time (sec)
p2.2.a 90 90 < 1
p2.2.b 120 120 1
p2.2.c 140 140 1
p2.2.d 160 160 2
p2.2.e 190 190 2
p2.2.f 200 200 6
p2.2.g 200 200 4
p2.2.h 230 230 3
p2.2.i 230 230 4
p2.2.j 260 260 6
p2.2.k 275 275 9
p2.3.a 70 70 < 1
p2.3.b 70 70 < 1
p2.3.c 105 105 < 1
p2.3.d 105 105 1
p2.3.e 120 120 1
p2.3.f 120 120 1
p2.3.g 145 145 1
p2.3.h 165 165 2
p2.3.i 200 200 2
p2.3.j 200 200 2
p2.3.k 200 200 1
p2.4.a 10 10 < 1
p2.4.b 70 70 < 1
p2.4.c 70 70 < 1
p2.4.d 70 70 < 1
p2.4.e 70 70 < 1
p2.4.f 105 105 < 1
p2.4.g 105 105 < 1
p2.4.h 120 120 1
p2.4.i 120 120 1
p2.4.j 120 120 1
p2.4.k 180 180 1

Average 140.45 140.45 2.41

in a Euclidean plan and the time that corresponds to arc (vi →
vj) denoted by tvi,vj is exactly the euclidean distance between
these two vertices, i.e., tvi,vj =

√
(xi − xj)2 + (yi − yj)2. So

the speed of the member is considered to be one unit.
Tables I–III indicate the results obtained on the three sets

of problem instances p1, p2, and p3 respectively. The first
column in each table contains the name of the instance,
the second column “Best Lit.” indicates the best known
solution (score) for each instance extracted from [11]. The next
column “BSCBP” shows the results obtained by the proposed
algorithm, the values are in bold characters when the best
known value in the literature is reached. Finally column 4
gives the computation time in seconds.

It is to note that beam search is run for each value of ω
(the beam width) in the interval 1 to 200. So the CPU time
indicates here the cumulated time.

For the first group (p1) shown in Table I, 48 best known
values out of 54 (89%) are reached by algorithm BSCBP. The
computation time varies from 0 seconds to 7100 seconds. The
time increases when Tmax increases, this is because longer
paths have to be computed, and the 3-opt strategy (that is
called in each step of beam search) is time consuming when
there are more arcs to process. The last row of Table I indicates
the average score obtained on the 54 instances. Its is equal to
110.93 for algorithm BSCBP and 112.04 for the best known
results, this correspond to a gap of 0.99%. The last row gives

Instance Best Lit. BSCBP CPU time (sec)
p3.2.a 90 90 < 1
p3.2.b 150 150 2
p3.2.c 180 180 9
p3.2.d 220 220 129
p3.2.e 260 260 25
p3.2.f 300 300 1882
p3.2.g 360 360 3161
p3.2.h 410 390 4309
p3.2.i 460 450 36541
p3.2.j 510 500 4034
p3.2.k 550 550 4591
p3.2.l 590 590 5260
p3.2.m 620 620 5719
p3.2.n 660 660 6128
p3.2.o 690 670 47753
p3.2.p 720 720 7044
p3.2.q 760 750 8019
p3.2.r 790 790 8570
p3.2.s 800 800 8951
p3.2.t 800 800 10109
p3.3.a 30 30 < 1
p3.3.b 90 90 < 1
p3.3.c 120 120 1
p3.3.d 170 170 26
p3.3.e 200 200 6
p3.3.f 230 230 12
p3.3.g 270 270 670
p3.3.h 300 300 16
p3.3.i 330 330 1311
p3.3.j 380 380 1770
p3.3.k 440 430 2075
p3.3.l 480 480 2570
p3.3.m 520 500 4647
p3.3.n 570 560 3846
p3.3.o 590 570 315
p3.3.p 640 640 4885
p3.3.q 680 640 4828
p3.3.r 710 710 4741
p3.3.s 720 710 5939
p3.3.t 760 720 70512
p3.4.a 20 20 < 1
p3.4.b 30 30 < 1
p3.4.c 90 90 < 1
p3.4.d 100 100 < 1
p3.4.e 140 140 1
p3.4.f 190 190 1
p3.4.g 220 220 6
p3.4.h 240 240 9
p3.4.i 270 270 89
p3.4.j 310 310 119
p3.4.k 350 350 147
p3.4.l 380 380 201
p3.4.m 390 390 274
p3.4.n 440 440 344
p3.4.o 500 480 372
p3.4.p 560 560 386
p3.4.q 560 560 419
p3.4.r 600 600 527
p3.4.s 670 670 607
p3.4.t 670 670 595

Average 414.67 410.67 5179.3

the average computation time, that is equal to 1248 seconds
(20.8 minutes).

Table II displays the results obtained on the 33 instances
of the second set (p2). Here, all the best known solutions in
the literature are reached, and the average computation time is
equal to 2.41 seconds. This indicates that these problems are

TABLE II
RESULTS OBTAINED ON THE 33 INSTANCES OF THE SECOND SET (P2):

|V | = 32 VERTICES

TABLE III
RESULTS OBTAINED ON THE 60 INSTANCES OF THE THIRD SET (P3):

|V | = 33 VERTICES

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:8, No:9, 2014

1206

10

10

10
10

5 5

5 5
10

10
10

5

10
15

15

10
5

5
5

10 10
10

15

15

15
10

10
10

10
10

0

5

10

15

20

25

30

4 6 8 10 12 14 16 18 20

Y

X

max

10

10

10
10

5 5

5 5
10

10
10

5

10 15 15

10

5

5

5
10 10

10

15

15

10

10
10

10

0

5

10

15

20

25

30

4 6 8 10 12 14 16 18 20

Y

X

1

2

3

Points outside
Tmax ellipse

easier to solve than those of set p1.
Finally, Table III contains the results obtained on the third

set p3 that contains 60 instances. 47 best known solutions out
of 60 are reached, which corresponds to 78%. The average
computation time exceeds here 5000 seconds, this is because
some instances instances are harder to solve. More precisely,
the computation time exceeds 10000 seconds for instances
p.3.2.i, p3.2.o, p.3.2.t, and attains 70512 seconds for p.3.3.t.

Fig. 3 shows an example of an instance where |V | = 32, (30
customers augmented with the start and end points), m = 3
members or vehicles, and Tmax = 18.3. The score associated
with each vertex is indicated. Points � and � correspond to
the start and end points respectively.

Fig. 4 indicates the solution obtained by the proposed
algorithm BSCBP on instance p.1.3.k. The three obtained
paths are:

• Path 1© has a score S(P1) = 10+10+15+5+10+5 = 55
and a total time T (P1) = 17.717.

• Path 2© : S(P2) = 5 + 15 + 10 + 10 = 40, T (P2) =
17.975.

• Path 3© : S(P3) = 10 + 10 + 10 + 5+ 5 = 40, T (P3) =
17.803.

So the total collected score is S(P) = 135, this corresponds
to the best known value in the literature for this instance.

Note also that there are five vertices that are outside the
Tmax ellipse. These vertices are then not considered when
computing the solution.

V. CONCLUSION

In this work, a hybrid heuristic was presented in order
to solve the team orienteering problem. The corresponding
algorithm, denoted by BSCBP, is based on beam search that
computes several paths in parallel in order to increase the
probability to obtain “good ones” and a local optimization
method that corresponds to the 3-opt strategy used to decrease
the total time in the paths under creation. The results obtained
on several set of problem instances show that the method
is competitive since it reaches the best known results in the
literature in 87% of cases.

REFERENCES

[1] H. Bouly, D. C. Dang, and A. Moukrim, A memetic algorithm for the
team orienteering problem, 4OR, vol. 8, 2010, pp. 49-70

[2] S. Boussier, D. Feillet, and M. Gendreau. An exact algorithm for the team
orienteering problem, 4OR, vol. 5(3), 2007, pp. 211–230.

[3] S. E. Butt and D. Ryan, An optimal solution procedure for the multiple
tour maximum collection problem using column generation, Computers
& Operations Research, vol. 26(4), 1999, pp. 427–441.

[4] S. E. Butt and T. M. Cavalier, A heuristic for the multiple tour maximum
collection problem, Computers & Operations Research, vol. 21(1), 1994,
pp. 101–111.

[5] I. Chao, B. Golden, and E. Wasil, The team orienteering problem,
European Journal of Operational Research, vol. 88(3), 1996, pp. 464–474.

[6] G. A. Croes, A method for solving traveling salesman problems,
Operations Research, vol. 6, 1958, pp. 791–812.

[7] M. Desrochers, J. K. Lenstra, M. W. P. Savelsbergh, and F. Soumis,
Vehicle Routing with Time Windows: Optimization and Approximation,
Elsevier Science Publishers B.V. (North-Holland), 1988, pp. 65–84, in
B.L. Golden and A.A. Assad (Editors), Vehicle Routing: Methods and
Studies.

[8] Q. Hu and A. Lim, An iterative three-component heuristic for the team
orienteering problem with time windows, European Journal of Operational
Research, vol. 232, 2014, pp. 276–286.

[9] B. I. Kim, H. Li, and A. L. Johnson, An augmented large neighborhood
search method for solving the team orienteering problem, Expert Systems
with Applications, vol. 40(8), 2013, pp. 3065-3072.

[10] G. Laporte, The Traveling Salesman Problem: An overview of exact
and approximate algorithms, European Journal of Operational Research,
vol. 59, 1992, pp. 231–247.

[11] S. W. Lin, Solving the team orienteering problem using effective
multi-start simulated annealing, Applied Soft Computing, vol. 13, 2013,
pp. 1064–1073.

[12] P. Vansteenwegen, W. Souffriau, and D. V. Oudheusden, The
orienteering problem: A survey, European Journal of Operational
Research, vol. 209 (1), 2011, pp. 1-10.

[13] T. Vidal, T. G. Crainicc, M. Gendreau, and C. Prins, Heuristics
for multi-attribute vehicle routing problems: A survey and synthesis,
European Journal of Operational Research, vol. 231(1), 2013, pp. 1-21.

Fig. 3 Instance p.1.3.k where n = 30 (members), m = 3 and T =
18.3.

Fig. 4 Solution obtained by the proposed algorithm BSCBP on problem
p1.3.k, total score = 135

