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Abstract—This paper presents an adaptive technique for generation
of data required for construction of artificial neural network-based
performance model of nano-scale CMOS inverter circuit. The training
data are generated from the samples through SPICE simulation. The
proposed algorithm has been compared to standard progressive sam-
pling algorithms like arithmetic sampling and geometric sampling.
The advantages of the present approach over the others have been
demonstrated. The ANN predicted results have been compared with
actual SPICE results. A very good accuracy has been obtained.
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tificial Neural Network

I. INTRODUCTION

C Ircuit simulation tools are indispensable components
for estimating the performances of nano-scale CMOS

integrated circuits [1]. In an optimization-based design pro-
cedure, the circuit simulation tools are embedded within a
stochastic global search optimization procedure, used for the
task of circuit sizing. However, the task of circuit simulation is
computationally expensive, which increases almost in an ex-
ponential way in the nano-scale regime [2]. Therefore, lots of
researches have been accomplished in creating comprehensive
performance models of integrated circuits [3]. These models
predict the performances of an integrated circuit as functions
of the design parameters. As a result, these models may act
as surrogates for full circuit simulation. The models are often
multidimensional and nonlinear in order to accurately capture
the intricate details of the performance parameters [3], [4].
In this paper, artificial neural network (ANN) has been used
for constructing accurate performance models of nano-scale
CMOS inverter circuit.

Several data mining algorithms, including ANN have an
important property that as the training set size increases, the
accuracy increases until at some point it saturates, i.e., as the
training set size increases beyond a certain value, the predictive
accuracy does not increase significantly. A too-small training
set will thus results in sub-optimal generalization performance.
On the other hand, a too-large training set will results in lot of
training time consumption without any significant advantage.
In addition, the procedure of training sample generation is
often very costly, especially for integrated circuit design
applications. The task of determining an optimal training
set size for acceptable predictive accuracy is therefore, an
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important challenge for developing an ANN-based predictive
performance model.

In this paper, we present an adaptive sampling algorithm
for generation of an optimum size of training sample set.
This allows a unified model building process that incorporates
both data generation and neural network training. The present
algorithm has been used to construct the performance model of
a nano-scale CMOS inverter. The training data are generated
from the samples through SPICE simulation. The accuracy of
the constructed model is found to be quite high. The present
algorithm has been compared with other standard progressive
sampling algorithms.

The rest of the paper is organized as follows. Section II
discusses related works in performance modeling and adaptive
sampling. An overview of performance modeling using ANN
is described in Section III. The adaptive sampling algorithm
is described in details in Section IV. Section V presents the
numerical results and finally conclusion is drawn in Section
VI.

II. RELATED WORK

Artificial neural network (ANN) has been widely used for
solving electronic engineering problems. In [5], ANN has
been used for selecting the channel length and width of a
MOS transistor for specific drain current. Signal and noise
behavior of microwave transistors are modeled by multi layer
perceptron (MLP) neural network in [6]. In [7], [8], ANN has
been used for the task of technology independent circuit sizing
for analog and digital integrated circuits. ANN has been used
in [9] for simulation of nano-scale CMOS circuits. In [10],
ANN has been used for modeling an on-chip spiral inductor.

The difference between static and dynamic sampling for
data mining has been discussed in [11]. The concept of
progressive sampling using arithmetic sampling and geometric
sampling has been discussed in [12]. In [13], a learning
curve sampling technique has been discussed for model-based
clustering problem. A dynamic adaptive sampling algorithm
using Chernoff inequality for ANN classification problems has
been presented in [14]. In [15], neural network training driven
adaptive sampling algorithm for microwave modeling has
been described. An adaptive sampling technique for modeling
of analog circuit performance parameters using pseudo-cubic
splines is discussed in [16] .
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Fig. 1. (a). CMOS Inverter (b) ANN Architecture

III. PERFORMANCE MODELING USING ANN

This section briefly discusses the procedure for generation
of performance models for nano-scale CMOS inverter using
ANN [17],based on the general methodology described in [18].

A. Problem Formulation

The basic circuit diagram of a CMOS inverter is shown
in Fig .1(a). Let p and q be the number of input and output
neurons of an ANN structure. Let X̄ be the p dimensional
input vector containing the circuit design parameters, i.e., the
channel width Wn of the NMOS transistor, the channel width
Wp of the PMOS transistor and the output load capacitor
CL. Let ρ̄ be the q dimensional output vector containing the
performance parameters of the design, i.e., output rise time
(τR) and fall time (τF ) , inverter switching point (VSP ) and
average power consumption (Pav). Thus the inputs and outputs
of the performance model are as follows

X̄ = [Wn,Wp, CL] (1)

ρ̄ = [τR, τF , VSP , Pav] (2)

The performance model is thus written as

ρ̄ = f
(
X̄
)

(3)

TABLE I
RANGE OF CIRCUIT DESIGN PARAMETERS

Parameters Min Max
Wn(nm) 90 1000
Wp(nm) 90 1000
CL(pF ) 1 5

This relationship between the circuit design parameters and
the performance parameter is generally strongly nonlinear
and multi-dimensional. Traditionally this is evaluated through
SPICE simulation. The corresponding neural network model
is written as

ρ̄ = fANN
(
X̄
)

(4)

where fANN is a neural network, ρ is a q dimensional output
vector of neural model responses, X̄ is the ANN input vector,
w contains all the weight parameters required to construct
the ANN structure. This work therefore, attempts to construct
fANN such that it is a faithful approximation of the original
function f .

B. ANN Model Development

1) Data Generation: In order to generate training and test
data, CMOS inverters are constructed corresponding to the
circuit design parameters listed in Table I. The channel length
of both the transistors is fixed at minimum of the process
technology, i.e., 45nm. The other process technology param-
eters are taken from Berkeley Predictive Technology model
file [19]. Based on Halton sequence generator [20], uniformly
distributed samples are generated within the specified range.
The training and test data corresponding to those sample
points are generated through T-SPICE simulation using BSIM4
model. Transient analysis and DC transfer sweep analysis are
performed in order to extract the performance parameters.

2) Data Scaling: It is observed from Table I that the
input parameters vary over a wide range. Similarly the output
performance parameters vary over a wide range. Therefore,
a systematic pre-processing of training data, referred to as
data scaling is required for efficient construction of the ANN
model. In this work, we have used linear scaling of the data
between 0 and 1, described by the following formula

x̃ = x̃min +
x− xmin

xmax − xmin
(x̃max − x̃min) (5)

and the corresponding de-scaling formula is given by

x = xmin +
x̃− x̃min

x̃max − x̃min
(xmax − xmin) (6)

where x, xmin, xmax represent the original data and represent
x̃, x̃min, x̃max the scaled data.

3) Data Organization: The generated data is divided into
two sets, namely training data set and test data set. The
training data is used to guide the training procedure, i.e.,
updating the NN weight parameters. A portion of the training
data set is used for validating the training procedure. The test
data is used to independently examine the final quality of the
trained neural model in terms of accuracy and generalization
capability.
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Fig. 2. Hypothetical Learning Curve for ANN Model

4) Neural Network Training: A standard 4-layer feedfor-
ward MLP architecture has been considered in order to con-
struct the ANN model of the inverter. This is illustrated in Fig.
1(b). During the training procedure, the weight parameters and
the bias values are adjusted in order to minimize the training
error. For this purpose, we have used Levenberg-Marquardt
(LM) back propagation method as the training algorithm. The
training goal is set to 10−7. The training algorithm of Matlab
toolbox has been used.

5) ANN Model Accuracy: In order to verify the accuracy
of the constructed ANN model, statistical measures such
as average relative error and correlation coefficient between
the neural outputs and actual SPICE generated values are
calculated for each output parameter. These are defined as
follows

E =
1
nρ

n∑
1

(ρ− ρ′) (7)

R =
n
∑
ρρ′ −∑ ρ

∑
ρ′√[

n
∑
ρ2 − (

∑
ρ)2
]
−
[
n
∑
ρ′2 − (

∑
ρ′)2

] (8)

Here, n, ρ and ρ′ are the number of samples in the data set,
ANN model output and corresponding SPICE simulated value
respectively. The correlation coefficient is a measure of how
closely the ANN outputs fit with the target values. It is a
number between 0 and 1. If there is no linear relationship
between the estimated values and the actual targets, then the
correlation coefficient is 0. If the number is equal to 1.0, then
there is a perfect fit between the targets and the outputs. Thus,
higher the correlation coefficient, the better it is.

IV. ADAPTIVE SAMPLING ALGORITHM

This section first discusses the motivation of the algorithm,
followed by an overview of the algorithm and its details.

A. Motivation

The requirement of adaptive sampling algorithm for con-
struction of an ANN-based performance model is based upon
three observations. First, the predictive performance/accuracy
of the ANN increases initially with the increase of training
data set size, however, beyond a certain data set size, the

Input: nmax, ,
Output: nmin corresponding data set Dmin 

Step 1:
(a) Initialize n0=0.1nmax
(b) Generate initial data set D0 using Halton sequence and

 SPICE simulator
(c) Initial performance u^(-1)=0
Step 2:

 For iteration i=0 to imax do
 (a) Set m=Di
 (b) Apply ANN to m  and determine u^(ni)
 (c) IF |u^(ni)-u^(ni-1)|  && u^(ni)

 TERMINATE Return ni and Di
 ELSE

 Calculate ni+1 using (9)
IF ni+1 < nmax

(i)  Generate Di+1 data set using Halton sequence and 
 SPICE simulator

 (ii) Goto Step 2(a)
ELSE

 Data set exhausted BREAK

Fig. 3. Adaptive Sampling Algorithm

accuracy does not increase significantly. This is referred to as
the learning characteristics of an ANN algorithm. The curve
describing the performance as a function of the sample size of
the training data is often called the learning curve. A typical
plot of the learning curve of an ANN predictive model is
shown in Fig. 2. It is observed from this curve, that the models
built with training set size lower than nmin, will have lower
accuracy compared to that of the models built with training
set size nmin. On the other hand, models built with training
set size greater than nmin, will not have any significant higher
accuracy compared to that of the models built with training
set size nmin. Second, the computational cost of training an
ANN model increases as function of the size of the training
data set. Third, the cost of training data generation for circuit
performance modeling is quite expensive.

B. Overview of the Algorithm

The algorithm takes as inputs: (i) The maximum sample
size nmax, corresponding to which the sample set can be
generated, (ii) a very small value ε, which is used to formulate
the stopping criteria and (iii) desired accuracy Υ of the model.
It gives as output the minimum sample size nmin and the
corresponding data sample Dmin. The algorithm starts with
an initial sample size n0 = 0.1×nmax. Corresponding to this,
the initial data set D0 is generated through Halton sequence
generator and SPICE simulation. Subsequently the next sample
size n(i+1) and the corresponding data set D(i+1) is generated
through an iterative procedure. The algorithm terminates when
a stopping criterion is satisfied. In addition, if the optimum
value cannot be located within nmax, the algorithm breaks.
The pseudo code of the algorithm is described in Fig. 3

C. Details of the Algorithm

The problem may be considered to be a decision-theoretic
problem, where we have to judiciously decide how to compute
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TABLE II
COMPARISON OF THE SAMPLE SIZE AND COMPUTATION TIME FOR

DIFFERENT METHODS TO REACH CONVERGENCE

Method Sample size ARE cpu time
Full Sampling 1030 0.0648 -

Arithmetic Sampling 1000 0.0643 117.2
Geometric Sampling 800 0.0717 46.8

Our Algorithm 923 0.0647 65.6

n(i+1) i.e., the sampling schedule, initial sample value and the
stopping criteria. These are discussed as follows

1) Initial Sample Size: From the preliminary knowledge
about learning curve characteristics, an useful conjecture is to
take a small initial sample size (determination of the starting
sample size is an open problem). In the present work, it is
heuristically assumed to be n0 = 0.1 × nmax.

2) Sampling Schedule: A ‘myopic’ strategy has been
adopted, where we assume that the current performance mea-
sure of the ANN is the optimal one. The next sample size
is believed to be distributed somewhat around the current
sample size. We assume this distribution to be Gaussian
distribution. The mean of the Gaussian distribution is kept
at the current point and the variance is assigned so as to have
about 99.73% (equivalent to 3σ) of the points in the given
domain (n0 ≤ ni ≤ nmax). The variance σ is found by
solving the equation

3σ =
(nmax − n0)

2
(9)

With this variance, the next sample size is calculated by the
formula

ni+1 = μ+ σN (10)

where mean μ = ni and N is a random number drawn from
a Gaussian distribution with zero mean and unity standard
deviation σ.

3) Stopping Criteria: An important component of the sam-
pling algorithm is the stopping criteria. Let the current stage
be i and the previous stage be (i− 1) and the corresponding
performance measures be û(ni) and û(ni−1) respectively. The
following inequality is considered as one of the stopping
criteria.

|û(ni) − û(ni−1)| ≤ ε&&û(ni) ≤ Υ (11)

where ε is a very small value, depending upon the chosen
application. Simultaneously the desired accuracy of the model
has to be satisfied. It may be noted that the performance
measure û(i) is calculated based on the average relative error
E, as discussed in (8). In addition, if the algorithm does not
find the value of the optimal sample set within the given bound
of the sample size, the algorithm will terminate.

V. NUMERICAL RESULTS

In this section, we present numerical results to demonstrate
the utility of the present algorithm. We will first provide a
test example and then discuss how this algorithm is applied
to the problem of performance model construction of CMOS
inverter.

Fig. 4. Comparison of learning curves for concrete problem between different
sampling techniques
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Fig. 5. Scatter plot between ANN predicted strength and actual results

A. Test Case

The algorithm is applied to a test case of predicting the
compressive strength of high performance concrete using ANN
[21]. The compressive strength of concrete is a function of
eight parameters, which serve as the inputs of the ANN
structure. These are Cement, water, coarse aggregate content,
fine aggregate content, age of testing, fly ash, blast furnace
slag, superplasticizer and water-to-binder ratio. A total number
of 1030 samples (input-output data) are provided [22]. The
chosen network architecture is feedforward multilayer percep-
tron, with one hidden layer and eighth neurons. This is similar
to that used in [21].

The convergence of our algorithm has been compared to
other approaches such as full sample, arithmetic sampling
and geometric sampling. In full samples, all the available
data are used for ANN prediction. In arithmetic sampling, a
fixed number of samples (100 in this case) are added until
convergence is reached. In geometric sampling, the training
set size is increased geometrically with common ratio 2. The
initial sample size in each case is 100. For our algorithm, we
have used ε = 1 × 10−4.

The optimum sample size nmin is found out to be equal
to 923. A comparison of the total number of samples (av-
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TABLE III
COMPARISON OF THE TOTAL NUMBER OF ITERATIONS AND CPU TIME

REQUIRED FOR THE DIFFERENT METHODS TO REACH CONVERGENCE FOR
THE INVERTER PROBLEM.

Method Iteration Count cpu time
Arithmetic Sampling 9 189.6

Our Algorithm 6 117.5

eraged over 10 runs) and the computation time required for
the different methods is provided in Table II. The learning
curve corresponding to our algorithm, arithmetic sampling
and geometric sampling is illustrated in Fig. 4. This timing
information is based on PC with Core-2-duo processor and
2GB RAM. We observe that compared to full sampling, using
our algorithm same accuracy can be obtained with much
less number of samples. This observation is also true while
comparing with arithmetic sampling. For geometric sampling,
we observe that the convergence could not be reached. With
the current sampling schedule for geometric sampling, the
algorithm overshooted the optimum point. As far the compu-
tation time is considered, we observe that our algorithm takes
less time compared to the arithmetic sampling.

The correlation plot between the predicted ANN data and
actual data considering 923 samples is shown in Fig. 5. The
correlation coefficient is also shown. This is found to be same
as that obtained when all the available samples have been used
for ANN prediction and also as reported in [21].

B. CMOS Inverter

The data generation procedure has been carried out using
the standard sampling schemes as well as our algorithm. The
modeling results of the three sampling techniques are summa-
rized in Fig. 6(a) - 6(d) for each of the chosen performance
parameters. The optimum sample size nmin is found out to be
equal to 828. We observe from the learning curves, that for
all the cases, the geometric sampling technique cannot reach
the convergence. The arithmetic sampling technique reaches
the optimum point with more iterations compared to that
required for our algorithm. In each iteration new samples are
generated for ANN training. The quantitative data regarding
this is provided in Table III. This timing information is based
on PC with Core-2-duo processor and 2GB RAM.

It may be noted that the efficiency of the sampling algorithm
in locating the optimum size nmin neither depends on the
choice of the initial sample size nor on the maximum sample
size nmax. This is illustrated for the rise time τR output of
the inverter in Fig 7 below. In order to verify the quality of
the resultant ANN, we measure the various quality metrics
discussed above. The percentage E measured on test data for
all the outputs are summarized in Table IV. We observe that
a very good accuracy has been obtained in each case. Figure
8(a) - 8(d) respectively show τR, τF , VSP and Pav for 100
designs, obtained through ANN and SPICE simulations. We
observe that all the ANN outputs show good matching with
SPICE results. The scatter plots between the ANN predicted
results and SPICE simulations are shown in Fig. 9(a) - 9(d).
We observe nearly perfect diagram with unity correlation

(a) Rise Time

(b) Fall Time

(c) Switching point

(d) Average power

Fig. 6. Learning Curves of the various outputs obtained through different
sampling techniques.
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Fig. 7. Learning Curves of the rise time τR output illustrating the
independence of the algorithm on the bound of the sample size.

coefficient. These demonstrate the accuracy of the constructed
ANN model.

TABLE IV
ANN MODEL ACCURACY

Error Output ARE (%) Test data
τR 0.42

E τF 1.41
VSP 0.74
PSP 0.39
τR 0.9999

R τF 0.9998
VSP 0.9999
PSP 0.9999

VI. CONCLUSION

Data generation is an important step toward developing
accurate ANN model. Using a large set of training data does
not always results in significant improvement in prediction
accuracy of the model. On the other hand, a small sampling set
may yield an inaccurate model. In addition, the data generation
procedure is often a costly procedure, especially for integrated
circuit designs. The present adaptive sampling algorithm pro-
vides a unified way of generating samples incorporating both
data generation and neural network training procedure. The
algorithm drives the data generator to increment the size of
the sampling set, until there is no significant improvement in
the model accuracy. The algorithm has been used to construct
the performance model of a nano-scale CMOS inverter circuit.
The accuracy of the so constructed model is found to be quite
high. In addition, the proposed algorithm has been compared
with other standard progressive sampling algorithm and the
advantages of our approach have been demonstrated.
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Fig. 8. SPICE simulation versus ANN prediction output.
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Fig. 9. Scatter diagram for ANN prediction output..
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