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Abstract—In this paper a new embedded Singly Diagonally 

Implicit Runge-Kutta Nystrom fourth order in fifth order method for 
solving special second order initial value problems is derived. A 
standard set of test problems are tested upon and comparisons on the 
numerical results are made when the same set of test problems are 
reduced to first order systems and solved using the existing 
embedded diagonally implicit Runge-Kutta method. The results 
suggests the superiority of the new method.   

 
Keywords—Runge-Kutta Nystrom,  Special second order 

problems. 

I. INTRODUCTION 
EVERAL methods have been proposed for the numerical 
solutions of the special second-order ordinary differential 

equations (ODEs) of the form: 
 

    ),( yxfy =′′ , 00 )( yxy = , 00 )( yxy ′=′              (1)                                  
 

In which f does not depend on y′ .  In general the second 
order equation (1) can be reduced to an equivalent first-order 
system of twice the dimension and solved using the standard 
Runge-Kutta ( RK)  method. However, it is more efficient if 
the equation can be solved directly using Runge-Kutta 
Nystrom ( RKN) method,  such work can be seen in Sharp and 
Fine [1], Dormand, El-Mikkawy and Prince [2] and El-
Mikkawy and El- Desouky [3]. Generally efficient Runge-
Kutta and Runge-Kutta Nystrom codes involved the 
embedded pairs of orders q(p) where the method of order q = 
p +1 is used to obtain the numerical solutions of the problems 
and the method of order p is used to obtain the local truncation 
error, hence, the next step of the integration can be calculated. 
In this paper we are going to derive embedded pairs which are 
diagonally implicit and all the diagonal element are equal, 
such method is very efficient  in solving stiff differential 
equations, since the iteration matrix  ( )JhI γ2−   (where J  is 
the Jacobian of the system of equations) of the Newton 
iteration can be used in all stages.  

The Runge-Kutta Nystrom pair generates the 
approximations  111 ,, +++ ′nnn yyy  , 1+′ny  to  )( 1+nxy  and 

)( 1+′ nxy , according to the following: 
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The first two formulae are order q and the second two are 
order p and 
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The method can also be written in Butcher Tableau 
 
                            C        A 

                                   

b

b

b
b

′

′
 

 
( T

scccC ],,,[ 21= , ],[ ijaA =  ],,,[ 21 sbbbb = , 

],,,[ 21 sbbbb ′′′=′ , ],,,[ 121 −= sbbbb , 

],,,[ 121 −′′′=′ sbbbb . We refer to (2) as the Runge-Kutta 
Nystrom pair, where the approximations of order p+1 are 
being advanced from step to step and the approximations of 
order p is used for the  local truncation error so that the next 
stepsize can be obtained based on the local truncation error.  
Hence, the code developed here is the variable stepsize code. 

II. DERIVATION OF THE METHOD 
According to Papageorgiou, Famwlis and  Tsitouras  [4]  

the coefficients of a fifth order Runge-Kutta-Nystrom method 
must satisfy the following order conditions after using two 
basic simplifying assumptions. 
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TABLE I 
ORDER CONDITIONS FOR y′   

  
   Order 1 
conditions: 

 
1=′∑

i
ib  

 
(3) 

    
   Order 2 
conditions: 2

1
=′∑ i

i
icb  

 
(4) 

 
   Order 3 
conditions: 3

12 =′∑ i
i

icb  
 

(5) 

 
   Order 4 
conditions:  4

13 =′∑ i
i

icb  

24
1

=′∑ jij
ij

i cab  

 
(6) 

 
(7) 

 
   Order 5 
conditions: 
 
 
 
 
 
 

5
14 =′∑ i

i
icb      

60
12 =′∑ jiji cab  

60
1

=′∑ jiji
ij

i cacb  

 
(8) 

 
(9) 

 
(10) 

 
 TABLE II 

ORDER CONDITIONS FOR y′  

 
   Order 1 
conditions: 

 
1=′∑

i
ib  

 
(3)* 

    
   Order 2 
conditions: 2

1
=′∑ i

i
i cb  

 
(4)* 

 
   Order 3 
conditions: 3

12 =′∑ i
i

icb  
 

(5)* 

 
   Order 4 
conditions:  
 

4
13 =′∑ i

i
icb  

24
1

=′∑ jij
ij

i cab  

 
 

(6)* 
 

(7)* 

 
The simplifying assumptions are 

 2
2
1

i
ij

ij ca =∑                                    (11)                                                                                                  

 )1( ii cbb −′=                                    (12)                                                                                                          

From which the values of 1ia  and ib  for si ,,2,1=  can be 
obtained respectively. The proof of using the simplifying 
assumptions can be found in Hairer and Wanner [5].  

For the fifth order method all eight order equations for y′  
in Table I have to be satisfied and for the fourth order method 

all the ib′ have to satisfy all the equations in Table II and the 

values of ib   can be obtained from the following equation: 
 

)1( iii cbb −′=                                 (13)                   

Here we are going to derive embedded singly diagonally  
implicit RKN method of order 4, 4-stage in order 5, 5-stage or 
can be written as SDIRKN 5(4) method and γ  is the diagonal 
element. 
 
Algorithm to find the coefficients of SDIRKN 5(4) method. 
 
Step 1: Let 25.0=γ  

Step 2:  γ21 =c     (from equation 11 for  i=1). 
 
Step 3:  Give the values of 5432 ,,, cccc , with all the values   
             of c’s  obtain 4321 ,,, bbbb ′′′′  and 5b′   from equations  
            (3),(4),(5),(6) and (8). 
 
Step 4:  Use (12) to get the values of  4321 ,,, bbbb  and 5b . 
 
Step 5:  Use (3)*, (4)*,(5)* and (6)* and solve for 
              321 ,, bbb ′′′  and 4b′ . 
 
Step 6:   Use (13) to get the values of  321 ,, bbb  and 4b .  
 
Step 7:    Give the values of 52a  and 54a  and use (7),  
              (7)*, (9) and (10) to obtain the values of ija   

               where 1≠i . 
Step 8:    Use (11) to get the values of 1ia . 
 
By using MAPLE, the following are the parameters of the 
SDIRKN 5(4) method with free parameters are chosen to be 

,25.0=γ  =2c 0.2, =3c 0.4, =4c 0.6, =5c 0.9, 1.052 −=a  
and 15.053 =a  
 

=1c 0.7071067811865475 

=2c 0.2 

=3c 0.4 

=4c 0.6  

=5c 0.9 
25.05544332211 ===== aaaaa  

23.021 −=a  
5018253925002502.031 −=a  

5018252225002502.032 =a  
022138700088914267.041 −=a  

7885042120976370.042 =a  
7663662732062103.043 −=a  
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517716721567967.151 −=a  
1.052 −=a  

15.053 =a  
517717771567967.154 =a  

=′1b 3535918909522811.0−  
=′2b 0.6247556718194198 

1984337000548195.03 −=′b  
457176151903093.14 =′b  
9006513510611194.05 =′b  
3092342609538814.01 −=b  

5553584998045374.02 =b  
1190604200328917.03 −=b  

3828686460761237.04 =b  
49006510351061119.05 =b  

=′1b 1.318915246389200 

=′2b 0.3743745692181844 

=′3b 0.4575746950566785 

640631508645106.14 −=′b  

5707063863013318.01 =b  

7454752994996553.02 =b  

3400712745448170.03 =b  

6562524603458042.04 −=b  
 

The above coefficients are substituted into the error 
equations of the sixth order method both for y  and y′  see 
Dormand [6] and we obtained the error norm of the method 
which is:  
 
 3

2
)6( 1029696.8 −= xτ  and  3

2
)6( 1094999.9 −=′ xτ . 

Where ( )∑=
=

6

1

2)6(
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)6(
n

j
jττ and   

( )∑
=

′=′
6

1

2)6(
2

)6(
n

j
jττ  ,  τ  and τ ′  are error equations 

associated with the method. The error norms are smaller 
compared to other methods such as method in [4] which has 
error norms 210− . 

III. TEST PROBLEMS 
Below are some of the problems tested: 
 
Problem 1: A nonlinear problem. 

 

                 
π200,1)0(,0)0(

)sin(100
≤≤=′=

=+′′

xyy
yyy

 

          

          There is no true solution but the value at π20  is  
          0.000392823991. 
          Source: Chawla and Rao [7] 
          
          The first order system:  The new variables are yy =1     
          and yy ′=2  
                  21 yy =′      
                 )sin(100 112 yyy =+′  
                 1)0(,0)0( 21 == yy          π200 ≤≤ x                               
 

Problem 2: 
               xyy +−=′′     
               π160,2)0(,1)0( ≤≤=′= xyy  
                Solution: xxxxy ++= )cos()sin()(  
                Source:     Allen and Wing [8] 
 
               The first order system : 
                   
                 21 yy =′  
                 xyy +−=′ 12    ,   2)0(,1)0( 21 == yy    ,  
                 π200 ≤≤ x       
                 Solutions:  

                
.1)sin()cos()(
,)cos()sin()(

2

1

+−=
++=

xxxy
xxxxy

 

 
Problem 3:  

              
2
2

2
1

2
1

2
1

2
4

yy

y
yxy

+
−−=″  ,    

                                              π2)(,0)( 0101 −=′= xyxy  
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1

1
2

2
2

2
4

yy

y
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                                            0)(,1)( 0202 =′= xyxy  

            ππ 5
2

≤≤ x  

              Solution: )sin()(),cos()( 2
2

2
1 xxyxxy ==  

 
              Source:  Sharp and Fine [1] 
 
             The first order system: 

             

2
2

2
1

1
2

2
4

2
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2
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2
1

2
34231

2
4
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yy
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              ,0)( 01 =xy ,2)(,1)( 0302 π−== xyxy  
              0)( 04 =xy  

              Solution:   )sin()(),cos()( 2
2

2
1 xxyxxy == ,   

                               )cos(2)(),sin(2)( 2
4

2
3 xxxyxxxy =−= . 
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Problem 4: (The two-body gravitational problem) 
 

               3
2
2

2
1

1
1
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yy
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yy ,   1)0(,0)0( 22 =′= yy                       

                π160 ≤≤ x   ,  
                Solution: )sin()(),cos()( 21 xxyxxy == . 
                Source: Dorman et. al. [2] 
                  

The first order system:              

32
2

2
1

2
432

2
2
1

1
34231

)(
,

)(
,,

yy

y
y

yy

y
yyyyy

+

−
=′

+

−
=′=′=′  

              1)0(,0)0(,0)0(,1)0( 4321 ==== yyyy  
            Solutions:  )sin()(),cos()( 21 xxyxxy == ,     
           ).cos()(),sin()( 43 xxyxxy =−=  
 

IV. IMPLEMENTATION AND NUMERICAL RESULTS 
The set of tested problems in section III is solved using the 

new method and the results are compared with the numerical 
results when the same set of test problems are reduced to first 
order system twice the dimension and solve using method by 
Butcher and  Chen  [9]. 

For all the problems, they are considered as nonstiff and 
solve using simple iterations where every k’s  are iterated 
three times once stiffness is detected through iteracc hh > , 
the whole system is considered stiff and solve using Newton 
iterations.  acch  is the stepsize which is expected to meet the 
specified accuracy . 

iterh  is the stepsize which will make the iteration converge. 

Coefficient matrix for the Newton iteration is ( )JhI γ2− . 

Local truncation error : LTE = )(2
iii

s

i
inn kbkbhyy −=− ∑ . 

In this paper we just control the stepsize for y because we feel 
that the formula for  y contained the value of y′  , thus 
controlling y  means we are also indirectly controlling the 
value of y′ .   

For the new method (F1) the next stepsize is  

      old

p

nn
new h

yy
tolh

1
1

2
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and for the second method (B1) 
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⎡
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Where tol  is the chosen tolerance, oldh  is the current 

stepsize,  p is the order of the method and nn yy −  is the 

local truncation error. The reason why we used safety factor 
0.2 here is that to keep the global error small enough so that it 
is comparable with method F1. 
 

Some of the notations used:  
 
2.345789 )10( 2−  means  2.345789 x 210−  
 
TOL    ~  The tolerance chosen 

MTD   ~  The method used. 

F1 - SDIRKN 5(4) which has been derived in this paper.          

B1 - SDIRK 3rd order 4-stage embedded in 4th order  

        5-stage method by  Butcher and  Chen [9].              

FCN   ~    Number of  functions evaluated. 

STEP  ~    Number of steps. 

JAC ~    The number of Jacobian evaluation. 

FS ~   The number of failed steps. 

GE      ~     Maximum global error (max )( nn xyy − ), that is  

                  the computed solution  minus the true solution. 
 

TABLE III 
NUMERICAL RESULTS FOR PROBLEM 1                                      

TOL 
 

MTD FCN STEP JAC FS GE 

210−  
 

F1 
 

B1 

976 
 

10366 

882 
 

797 

1 
 

1 

0 
 

0 

0.115425 
 

5.808069(-4) 

 
410−  

 

 
F1 

 
B1 

 
26707 

 
26880 

 
2413 

 
2067 

 
1 
 

1 

 
16 

 
1 

 
4.023551(-4) 

 
2.448647(-2) 

 
610−  

 
F1 

 
B1 

 

 
85927 

 
67691 

 
7807 

 
5206 

 
0 
 

1 

 
5 
 

2 

 
9.651620(-7) 

 
2.502111(-2) 

810−   
F1 

 
B1 

 

 
216716 

 
170070 

 
19700 

 
13081 

 
0 
 

1 

 
2 
 

3 

 
1.265587(-8) 

 
2.503427(-2) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:2, No:2, 2008

128

 

 

TABLE IV 
NUMERICAL RESULTS FOR PROBLEM 2                                

TOL MTD FCN STEP JAC FSTEP GE 
 

210−
 

F1 
 

B1 
 

1740 
 

2537 

158 
 

195 

0 
 

0 

0 
 

0 

1.434827(-2) 
 

3.715717(-2) 

410−
 

F1 
 

B1 
 

4655 
 

6385 

423 
 

491 

0 
 

0 

0 
 

0 

6.379218(-6) 
 

2.361495(-3) 

610−
 

F1 
 

B1 
 

11783 
 

16044 
 

1071 
 

1234 

0 
 

0 

0 
 

0 

3.575833(-8) 
 

1.487438(-4) 

810−
 

F1 
 

B1 
 

29614 
 

40289 

2692 
 

3099 

0 
 

0 

0 
 

0 

3.005017(-10) 
 

9.376044(-6) 

 
 

TABLE V 
NUMERICAL RESULTS FOR PROBLEM 3                                      

TOL 
 

MTD FCN STEP JAC FS GE 

 
210−  

 
F1 

 
B1 

 
1916 

 
2386 

 
174 

 
183 

 
0 
 

1 

 
0 
 
0 

 
0.183162 

 
2.470289(-2) 

 
410−  

 
F1 

 
B1 

 

 
4853 

 
5917 

 

 
441 

 
455 

 
0 
 

0 

 
0 
 
0 

 
1.589209(-3) 

 
1.582103(-1) 

 
610−  

 
F1 

 
B1 

 
12201 

 
14952 

 
1109 

 
1150 

 
0 
 

0 

 
0 
 
0 

 
1.542600(-5) 

 
9.933131(-3) 

 
810−  

 
F1 

 
B1 

 

 
30648 

 
37585 

 
2786 

 
2891 

 
0 
 

0 

 
0 
 
0 

 
1.533881(-7) 

 
6.256793(-4) 

 
 

TABLE VI 
NUMERICAL RESULTS FOR PROBLEM 4                                      

TOL 
 

MTD FCN STEP JAC FS GE 

210−  
F1 

 
B1 

9018 
 

20928 

819 
 

3201 

1 
 

1 

1 
 

1 

6.219093(-3) 
 

6.784609(-1) 

 
410−  

 
F1 

 
B1 

 
23590 

 
52786 

 
2144 

 
8120 

 
0 
 

0 

 
1 
 

1 

 
4.094247(-5) 

 
4.258569(-2) 

 
610−  

 
F1 

 
B1 

 
59505 

 
132736 

 

 
5409 

 
20420 

 
0 
 

0 

 
1 
 

1 

 
3.777785(-7) 

 
2.663875(-3) 

 
810−  

 
F1 

 
B1 

 

 
149631 

 
333534 

 
13601 

 
51312 

 
0 
 

0 

 
2 
 

1 

 
3.654645(-9) 

 
1.675455(-4) 

 
 
 

V. CONCLUSION 
From the tables we observed that the new embedded 

SDIRKN 5(4) method produced better results in terms of 
function evaluations, number of steps and maximal global 
error. Problem 1 is considered stiff for all the tolerances 
whereas problem 4 is only stiff for lower tolerance. The 
numerical results suggest that,  the new method  is more 
efficient than the existing technique whereby the problem is 
reduce to first order system of ODEs. 
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