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Abstract—The fault detection and diagnosis of complicated 

production processes is one of essential tasks needed to run the process 
safely with good final product quality. Unexpected events occurred in 
the process may have a serious impact on the process. In this work, 
triangular representation of process measurement data obtained in an 
on-line basis is evaluated using simulation process. The effect of using 
linear and nonlinear reduced spaces is also tested. Their diagnosis 
performance was demonstrated using multivariate fault data. It has 
shown that the nonlinear technique based diagnosis method produced 
more reliable results and outperforms linear method. The use of 
appropriate reduced space yielded better diagnosis performance. The 
presented diagnosis framework is different from existing ones in that it 
attempts to extract the fault pattern in the reduced space, not in the 
original process variable space. The use of reduced model space helps 
to mitigate the sensitivity of the fault pattern to noise. 
 

Keywords—Real-time Fault diagnosis, triangular representation 
of patterns in reduced spaces, Nonlinear kernel technique, multivariate 
statistical modeling.  

I. INTRODUCTION 
HE impact of abnormal process operations is enormous 
both on safety and cost. To ensure safety and stability, it is 

necessary to continuously monitor the process operations, 
detect and diagnose process abnormalities, and take appropriate 
remedial actions. The fault diagnosis is to identify an 
assignable cause of the detected abnormal events, which helps 
operators to ensure productivity and final product quality 
[1][2]. On the other hand, the availability of on-line process 
data in most industrial processes has motivated the study of 
data-driven diagnosis methods. For the fault diagnosis, many 
multivariate statistical techniques have been developed: 
principal component analysis, partial least squares, and Fisher 
discriminant analysis [3]-[6]. These multivariate statistical 
techniques have been adopted frequently because of the sensors 
and data measurement technology. In addition, some 
researchers have also developed various techniques like 
wavelet transforms and multi-scale PCA [7][8].  

There has been much interest in nonlinear kernel-based 
statistical learning methods such as support vector machines [9]. 
They have the common characteristics that input data are 
mapped into a nonlinear space and then these mapped data are 
analysed. The use of such a kernel trick enables us to develop 
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various kernel methods including, kernel PCA, kernel PLS and 
kernel FDA [10][11]. In this work, a nonllinear kernel-based 
fault diagnosis is presented. To represent qualitative fault 
pattern in reduced spaces triangular representation method is 
combined with kernel PCA with an emphasis on improving 
on-line diagnosis performance. Among many fault diagnosis 
approaches, multivariate statistical methods depend on process 
measurement data to build empirical diagnosis models. Due to 
the nature, they are easy to construct, computationally efficient 
and relatively robust to noise [2]. In this area, various 
techniques have been utilized such as contribution plots, 
wavelet transforms, neural networks , multi-scale PCA and 
discriminant analysis [2][9]. To evaluate the diagnosis 
performance, the diagnosis performance using linear and 
nonlinear kernel combined with triangular representation of 
process data is demonstrated using multivariate simultation 
data of Tenneessee Eastman process.  

II.  METHODOLOGIES 

A.  Linear and Nonlinear Methods 
Principal component analysis (PCA) decomposes a large 

number of correlated original variables into an uncorrelated set 
of principal components. Informative and relevant information 
of raw data can be summarized in scores. When the original 
variables are highly correlated, several PCs are sufficient to 
explain the major behavior of the data. The remaining ones 
explain the noise of the data, and noise-filtering is done by 
excluding them from further analysis [1]. To derive nonlinear 
kernel version of PCA, called kernel PCA (KPCA), it is 
necessary to solve the eigenvalue problem λv = CFv. Here, CF 
is the M sample estimate of the covariance matrix in the feature 
space F:  
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where )(⋅Φ   is a nonlinear function. The eigenvalue equation 
can be written as 
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and there exists coefficients αi, i = 1, … , M, such that 
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Combining (1), (2) and (3) yields (Schölkopf et al. 1998) 
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The principal components for a test vector x, are calculated by: 
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B. Triangular Representation of Process Trends  
A triangular representation method was proposed by [12] to 

extract process features in a systematic manner. The qualitative 
state of x(t), QS(x,t), is defined with the triplet as QS(x,t)= 

>∂∂∂< )]t(x[)],t(x[)],t(x[ . If QS(x,t) remains constant, it means 
the uniform pattern or trend during that time interval. Basically, 
there are seven basic triangular components, which are 
determined by the first and second derivatives, as shown in 
Table I. For example, a triangular component with positive 

x][∂   and  ]x[∂∂  shows the pattern of concave upward and 
monotonic increase. For the representation of process data, 
triangular components serve as the geometric primitives so that 
any trend can be represented by a series of triangular 
components. Thus, such triangular representation of a process 
trend helps us to model the important features. In terms of fault 
diagnosis, it is actually the fingerprint of a fault that may appear 
in different magnitude or time duration.  

 
First, when a fault is detected, the fault data are projected onto 

a reduced space of PCA or KPCA to obtain score values. For 
this purpose, the measurement values of the process variables 
after the detection of the fault are recorded. By extracting the 
fault pattern via the triangular representation method, we can 
compare the extracted fault pattern with the existing fault 
patterns. More specifically, fault pattern vectors )j(y  can be 
accumulated over time, which is represented as 

T
j21 )],...,,([)j( yyyy =  . Here, yi is a (7×1) fault element vector 

at the ith sequence with T
i7i6i2i1i )]y,y,...,y,y([=y , in which 

each element of yi is either zero or one indicating the presence 
(absence) of triangular components. As shown in Fig. 1, for 
example, suppose the fault patterns observed are 2-4-7 for 

sequence 1, 2, and 3. Then the pattern vector at the first 
sequence ,]0000010[1

T=y at the second sequence 
T]0001000[2 =y and at the third sequence 
.]1000000[3

T=y Thus in this case, we can obtain y(3) as 
T]100000000010000000010[ . 

 

 
Fig. 1 An example of triangular representation 

 
To perform pattern matching for diagnosis, the similarity is 

calculated using the distance between the two pattern vectors 
)j(ry and fault library vector )j(r

kz  in the rth reduced 
dimension, which is given by )j()j()j(D rr

k
r
k yz −=  . For the 

kth fault in the library, the similarity index in the rth PC is given 
by  
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Here, when 0)j(Dr

k = )( jry is identical to )( jr
kz . Such a case 

is likely to happen at the beginning sequence of a fault. 

III. RESULTS AND PERFORMANCE COMPARISON 
The diagnosis performance based on the triangular 

representation of process data is demonstrated here. This work 
utilizes simulated data from the Tennessee Eastman process, 
which is a common test bed for continuous processes [13]. This 
process has various equipments including reactor, condenser, 
and compressor. As shown in Fig. 2, it consists of five major 
units: a reactor, a product condenser, a separator, a recycle 
compressor, and a product stripper. This process also produces 
two products G and H from four reactants A, C, D, and E. Also 
there are an inert B and a byproduct F. A total of 53 process 
variables are measured on-line. The gaseous reactants are fed to 
the reactor, where the liquid products G and H are formed. The 
reactions in the reactor are as follows:  

A+C+D→ G, A+C+E→ H, and A+E→ F+3D→ 2F.  

TABLE I 
SEVEN BASIC TRIANGULAR COMPONENTS 

True  
Cause 

COMPONENT 
]x[∂  ][ x∂∂  Description 

1 0 0 Constant 
2 + 0 Linear Increase 
3 - 0 Linear Decrease 
4 + + Concave Upward/Monotonic Increase 
5 + - Concave Downward/Monotonic Increase 
6 - - Concave Downward/Monotonic Decrease 
7 - + Concave Upward/Monotonic Decrease 
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Fig. 2 A schematic for TE process 

 
Seven different process faults are investigated to test the 

diagnosis performance. In this work they are referred to as FT1 
through FT7. These seven faults represent bias changes in the 
process. For example, a step change in the condenser cooling 
water inlet temperature, as shown in Fig. 3 and Fig. 4, results in 
some fluctuation in separator temperature and separator 
cooling water temperature accordingly. We need to find the 
on-line fault pattern at a given sequence. If the fault pattern in 
the first PC at the first sequence is constant, y1 is represented by  

T]0000001[1 =y  . In the same manner, the fault patterns for the 
next sequences can be determined. Similarly, the on-line fault 
pattern in the first PC can be formulated. The next step is to 
compare the on-line pattern vector with the existing fault 
patterns, i.e., )j(r

kz . As mentioned before, the distance  )j(Dr
k

 
between  )j(ry  and  )j(r

kz  and the similarity index )j(Sr
k   are 

obtained. Then )j(Sk   is calculated for each cause candidate, 

and the cause candidate with the highest value of  )j(Sk  is 
selected as the assignable cause. 

 
Fig. 3 A plot for separator temperature 

 

 
Fig. 4 A plot for separator cooling water temperature 

 
Table II shows the diagnosis results for the TE process based 

on the triangular representation of process fault data combined 
with the linear technique. The overall similarity indices for the 
seven faults at the fifth sequence are displayed. As an example, 
when the true cause of the fault is FT2, the overall similarity 
index values  )j(Sk  for each of cause candidates are 0.13, 0.30, 
0.18, 0.12, 0.09, 0.10, and 0.08. It means that the overall 
similarity index for the true cause (i.e., 0.30) is higher than 
those of other cause candidates. For a clear comparison, the 
highest value is highlighted by a bold style in each row of the 
table. In terms of diagnosis performance, Table II yielded 
incorrect diagnosis decisions for the two fault cases, i.e., FT1 
and FT3. Unlike other fault cases, these two cases did not 
produce the highest index values for the true causes of the cases. 
In case of FT1, for example, the true cause FT1 has the 
similarity index value of 0.18 which is lower than 0.20 of FT7. 
This is also the case for FT3 where the true cause FT3 
possesses lower similarity index value of 0.21 than 0.22 of FT1. 
In summary, the linear technique based diagnosis method 
shows a limited diagnosis result in this case study. 

 

Based on the nonlinear technique diagnosis results for the TE 
process were also evaluated as shown in Table III. Similar to 
Table II, the highest value of the similarity index for fault 
candidates is highlighted by a bold style in each row of Table 
III. The major difference between the diagnosis results of linear 
and nonlinear techniques used can be seen by comparing the 
case of FT1. In case of FT1, the use of the linear technique 
selected FT7 as the highest index value of 0.20 though the true 

TABLE II 
DIAGNOSIS RESULTS OF LINEAR METHOD 

True  
Cause 

SIMILARITY INDEX 
FT1 FT2 FT3 FT4 FT5 FT6 FT7 

1 0.18 0.12 0.10 0.09 0.14 0.17 0.20 
2 0.13 0.30 0.18 0.12 0.09 0.01 0.08 
3 0.22 0.09 0.21 0.11 0.11 0.10 0.16 
4 0.04 0.08 0.30 0.34 0.10 0.09 0.05 
5 0.05 0.07 0.20 0.22 0.24 0.10 0.12 
6 0.05 0.04 0.03 0.07 0.06 0.68 0.07 
7 0.10 0.05 0.12 0.03 0.15 0.09 0.46 
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cause is FT1. On the other hand, the use of the nonlinear 
technique yielded the right cause (FT1) with the index value of 
0.32 whilst FT7 has the index value of 0.17. It should be also 
noted that the use of nonlinear technique increased the index 
values for the right cause candidate in the other cases except the 
case of FT3. The fault pattern of FT3 still selected incorrect 
cause candidate of FT1 as the highest index value, which is 
similar to Table II. It turned out that the nonlinear technique 
based diagnosis framework outperformed the linear one for this 
case study.  

IV. CONCLUSION 
The use of a triangular representation of fault pattern in 

reduced spaces is presented to make a diagnostic decision using 
on-line multivariate process data. Using simulated data it was 
demonstrated that the nonlinear kernel method outperforms the 
linear method in terms of diagnosis performance. It is easy to 
implement because the historical data are already stored in a 
database, and thus can offer one of solutions for the on-line 
diagnosis of complicated industrial processes. Nonetheless, the 
improvement and stabilization of the diagnosis performance at 
the beginning of a fault need to be considered. It is because 
reliable diagnosis results at the beginning are meaningful to 
operators who need to take control actions. In this respect, the 
time delay in detect a fault can result in incorrect diagnostic 
decisions at all.  
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TABLE III 
DIAGNOSIS RESULTS OF NONLINEAR METHOD 

True  
Cause 

SIMILARITY INDEX 
FT1 FT2 FT3 FT4 FT5 FT6 FT7 

1 0.32 0.10 0.08 0.07 0.12 0.14 0.17 
2 0.10 0.37 0.15 0.11 0.11 0.08 0.08 
3 0.19 0.12 0.18 0.13 0.12 0.08 0.18 
4 0.02 0.10 0.23 0.41 0.09 0.09 0.06 
5 0.06 0.09 0.14 0.19 0.41 0.05 0.06 
6 0.02 0.03 0.02 0.05 0.05 0.77 0.06 
7 0.07 0.05 0.08 0.03 0.10 0.06 0.61 


