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Abstract—A thin layer on the component surface can be found 

with high tensile residual stresses, due to turning operations, which 
can dangerously affect the fatigue performance of the component. In 
this paper an analytical approach is presented to reconstruct the 
residual stress field from a limited incomplete set of measurements.  
Airy stress function is used as the primary unknown to directly solve 
the equilibrium equations and satisfying the boundary conditions. In 
this new method there exists the flexibility to impose the physical 
conditions that govern the behavior of residual stress to achieve a 
meaningful complete stress field. The analysis is also coupled to a 
least squares approximation and a regularization method to provide 
stability of the inverse problem. The power of this new method is 
then demonstrated by analyzing some experimental measurements 
and achieving a good agreement between the model prediction and 
the results obtained from residual stress measurement. 
 

Keywords—Residual stress, Limited measurements, Inverse 
problems, Turning process.  

I. INTRODUCTION 
ESIDUAL stresses on the surface of engineering 
workpiece induced by machining processes like turning 

can greatly affect its ability to withstand several functional 
aspects such as fatigue lifetime, stress corrosion, wear 
resistance and cracking [1]. These residual stresses resulting 
from metal removal processes have been studied for several 
decades [2]. In most cases after machining operations, a thin 
layer with remarkable tensile residual stress state can be found 
on the machined surface [3]. Research in the field of metal 
cutting has usually been based on experimentation and 
prototyping, which is expensive and rather slow. Most studies 
on the surface integrity and more specifically on residual 
stresses, found in literature, are performed experimentally [4]. 
Recently, more FEM-based studies are introduced in literature 
and nowadays it seems that, it is in all probability the only tool 
to provide models capable of fully predicting all the relevant 
variables in metal cutting [5,6]. However those methods 
present numerous numerical problems and hardly respect the 
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physical laws [7] and the application of such a method to get 
quantitative results is questionable [8]. 

Reconstruction of residual stresses has been attempted 
previously by Smith et al. [9] where a simple analysis for 
determining the multiaxial distribution from a limited set of 
measurements in steel cylindrical bars that had been hot 
forged and then shot blasted. Korsunsky [10] used a finite 
element based formulation for determining the distribution of 
eigenstrains in some practical cases from a set of experimental 
measurements of residual stresses. Qian et al. [11] used the 
boundary element method to reconstruct residual stress field 
for some typical cases. 

In contrast to earlier studies, this research represents a new 
analytical method to reconstruct the residual stress field that 
requires neither numerical tools such as the finite element or 
boundary element methods nor an assumed eigenstrain 
distribution. The complete residual stress field is determined 
utilizing an incomplete set of data by solving the stress 
equilibrium equations directly. The method is an analytical 
approach that uses an Airy stress function as the primary 
unknown while satisfying the equilibrium equations and 
traction free boundary conditions. The method is described in 
the next section and its strength is illustrated by examining 
experimental results from M'Saoubi et al. [3].  

II. ANALYTICAL RECONSTRUCTION OF RESIDUAL STRESSES 

A. Governing equations 
Residual stresses are defined as the stresses supported in a 

body in a fixed reference configuration where there is the 
absence of external forces and thermal gradients [12]. In the 
following we consider a residual stress field for axisymmetric 
conditions. This is similar to the approach adopted in earlier 
work [13] to examine residual stresses in autofrettaged thick-
walled tubes. The equilibrium equations are [14], 
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The boundary conditions including zero traction on the 
outer surface are, 

,    0rr r rzat r R θσ σ σ= = = =  (2) 
where R is the radius of the bar. Solving the two last 

equations of (1) for ,r rzθσ σ  together with employing the 
boundary conditions of (2) results in, 
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0      every wherer rzθσ σ= =  (3) 
Another condition for the axisymmetric problem is that the 

hoop stresses sum to zero when integrated over the volume, so 
that 

0
( ) 0

R
r drθθσ =∫  (4) 

It is now appropriate to introduce an Airy stress function, 
( )rϕ  that satisfies the equilibrium equations (1), 

1 ( )( ) ( ),      ( )rr
d rr r r

r drθθ
ϕσ ϕ σ= =   (5) 

To satisfy the traction free boundary conditions and (4), let 
us introduce the Airy stress function in the form, 

( )( ) ( )r r r R f rϕ = −  (6) 

where ( )f r is an arbitrary smooth analytical function which 
should have at least continuous derivatives on the whole 
domain . This choice of function not only satisfies all of 
requirements but also produces a smooth nonsingular stress 
field.  Also it is important to note that due to the presence of 
the plastic strain field, in contrast to linear elasticity theory, 
the Airy stress function does not need to be biharmonic. 

By introducing an Airy stress function of the form given by 
(6) the smooth nonsingular forms of the radial and hoop 
residual stresses are given by, 

( )
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rr r r R f r
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= − + −
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To control the behavior of the solution and to ensure the 
existence of the approximate solution and its uniqueness an 
arbitrary function ( )f r  with the following asymptotic 
expansion is considered, 

0
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= ∑  (8)   

where kc are the unknown real coefficients to be determined 
later. Consequently, the Airy stress function and stress field 
are rewritten as, 
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 (9) 

To choose the best form of the base functions ( )kf r , it is 
important to note that for the case of turning, the level of 
stresses decreased continuously with depth down to a 
minimum compressive stress value and then increased and 
stabilized at a level corresponding to the state of the material 
before machining, which means that the stress field smoothly 
vanishes as r approaches the centre of the bar [3]. So similar 
to wavelet theory [15], the function ( )rΓ is selected as a 
candidate of a modulation function. We use a family of shape 
functions derived from ( )rΓ by translation and dilation.  The 

function ( )kf r is, 

( ) k
k

k

r a
f r

b
⎛ ⎞−

= Γ⎜ ⎟
⎝ ⎠

 (10) 

where ( )rΓ is a smooth analytical nonlinear function. To 
ensure that ( )rΓ satisfies the physical conditions, an 
exponential function is selected, where 

[ ]( ) expr rγΓ = −  (11) 

It should be noted that kb is a positive strictly decreasing 
sequence that converges to zero and γ is a positive real 
constant that governs the rate of convergence of the solution 
which may be found numerically to depend on the 
sequence kb .  It is assumed that the sequence of ka is equal to 
the radius of the bar. 

B. Least squares approximation and Stabilization 
To achieve the best values for the coefficients of kc that 

appear in the asymptotic expansion (9), a least squares 
approximation analysis is developed similar to that developed 
earlier [13].  We assume that only limited measurements of 
the hoop stress are made at known radial locations.  
Evaluating ( )kf r at each q-measurement point at 
coordinate qr results in predicted values ( )kq k qf f r= . The 

corresponding values of the hoop stress at qr from the 

measurements are denoted by qT .  To assign our confidence in 

the results a weight function ( )w r at each q-measurement is 
introduced. Therefore the application of weight function 
results in predicted values ( )q qw w r= .  To apply a least 

square analysis to obtain the coefficients kc associated with the 
hoop stresses the following error function is introduced, 

2
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where N is the number of measurement points and M is the 
number of truncated series used to approximate the residual 
stress field. The form of weight function ( )w r can be selected 
on the basis of the accuracy of measurement at different 
points.  For simplicity it is assumed that ( ) 1w r = . 

It can be shown [13] that unique values of the 
coefficients kc can be found using, 

{ } { }1

m km kc f T
−

⎡ ⎤= ⎣ ⎦  (13) 
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Inverse problems are generally ill-posed and therefore 
regularity of the approximate solution, i.e. whether the 
approximate solution depends smoothly on the unknown 
parameters, has to be guaranteed.  Similar to earlier work [13] 
a Tikhonov-Morozov regularization method [16] has been 
adopted.  Knowledge of the bound of the measurement error 
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or noise level is essential in utilizing Tikhonov-Morozov 
regularization method and the noise level for the 
regularization was assumed to be 50MPa based on the 
resolution of the X-ray diffraction method [3]. 

III. ANALYSIS OF EXPERIMENTAL RESULTS AND DISCUSSION     
In this section we consider three set of results obtained from 

experimental measurements of residual stresses in an 
austenitic stainless steel machined bar. In all cases it has been 
assumed that only the magnitude of the hoop residual stress is 
known within a thin layer near to the machined surfaces. The 
complete residual stress field is then reconstructed and 
compared to experimental measurements. 

M'Saoubi et al. [3] studied an austenitic stainless steel 
(AISI 316L steel) bar with diameter of 150mm. Orthogonal 
cutting tests were conducted with tungsten carbide tools. 
Residual stress measurements were performed using X-ray 
diffraction method. More details of the original experimental 
measurements can be found in [3].  

Fig. 1 shows the hoop residual stresses profiles measured 
by M'Saoubi et al. [3] on three specimens cut at three different 
feed rates of 0.1, 0.2 and 0.25 mm/rev, here called specimens 
1, 2 and 3 respectively. 

 

 
Fig. 1 Measured hoop residual stresses using the X-ray diffraction 

method in machined austenitic steel [3]   
 
It is assumed that the generated residual stresses were 

axisymmetric and the residual stresses were relatively short 
range and confined to the near surface. These results are used 
here to reconstruct the complete residual stress fields using the 
analysis developed in the previous section.   

For each set of results shown in Fig. 1 the coefficients kc    
were determined and regularized and consequently the 
residual stress field distribution given by (9) was 
reconstructed in the complete section. The unknown 
parameters appearing in the definition of the base 
functions ( )kf r , (10) and (11), together with the number of 
terms M used in (9) are given in Table I. 

Fig. 2 compares experimental results with the reconstructed 
hoop stress profile as a function of the normalized distance 
from the centre for specimens 1. Similar results were obtained 

for specimens 2 and 3 and are presented in Fig. 3 and Fig. 4, 
respectively. Also Fig. 5 shows the reconstructed radial stress 

profile along the normalized distance from the centre for 
specimens 1, 2 and 3. 

The analysis provided an optimal agreement between the 
experimental measurements and model predictions. Also note 
that the reconstructed stress field satisfies all of the continuum 
mechanics requirements. 

 

 
Fig. 2 Reconstructed hoop residual stresses compared with X-ray 

diffraction results for specimen 1 
 

 
Fig. 3 Reconstructed hoop residual stresses compared with X-ray 

diffraction results for specimen 2 
 

M'Saoubi et al. [3] indicated in their research that based on 
a triaxial stress analysis conducted on the workpiece, they 
found that the radial and shear stress components were 
negligible, when compared to the high values found in the 

TABLE I 
VALUES OF THE RECONSTRUCTION PARAMETERS AND THE NUMBER OF TERMS 

USED IN (9) 
 

 kb  γ  M 

Specimen 1 3 k−  6 8 

Specimen 2 3 k−  7 8 

Specimen 3 4 k−  12 7 
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circumferential (hoop) directions. Note that in this analytical 
approach the same results were found for the shear stress 
components based on (3) and as was expected large values for 
radial residual stresses were not found and values were less 
than the resolution of the X-ray diffraction method. 

 

 
Fig. 4 Reconstructed hoop residual stresses compared with X-ray 

diffraction results for specimen 3 
 

 
Fig. 5 Reconstructed radial residual stresses for specimen 1, 2 and 3  

 
The choice of function is however not arbitrary and prior 

knowledge of the expected distribution lead to the choice of 
appropriate functions.  For each continuous function there is a 
corresponding formal expansion, i.e. (9), which has the 
property that its partial sums are the best approximations to 
the function in the least squares sense.  It can be shown that 
this partial sum in the least squares sense will always 
converge to the function under the conditions of linear 
independency of the shape functions which are already 
satisfied here (For more mathematical details see [13].)  
However it is desirable to study the rate and radius of 
convergence.  As indicated earlier, the real constant γ was 
introduced to control the rate of convergence and its values 
for each reconstructed results is given in Table I.  Choosing a 
good value for the positive real constant γ results in having a 
truncated series with less than 10 terms and therefore provided 
rapid convergence. 

A key feature in this analysis and reconstruction of the 

residual stress throughout the domain is that it not only 
interpolates between measured values but also provides 
additional information.  Furthermore, the possible fields 
included in the analysis are only those that satisfy all of the 
requirements given by the governing equations.  This results 
in very significant additional constraints being placed on data 
interpretation.  Provided the analysis of the experimental data 
is carried out using the above procedure, all the predicted 
stress fields necessarily conform to these constraints, 
furnishing additional insight into the residual stress field being 
studied.  A further significant feature of this work is that the 
analysis not only enables minimization of the error on one 
stress component and determines an expansion for that 
component the technique also provides expansions for the 
other components of the residual stress field. 

IV. CONCLUSION 
A new analytical approach has been developed to 

reconstruct the residual stress distributions in axisymmetric 
components containing axisymmetric residual stress fields.  
The results and analysis provided in this research demonstrate 
that limited measurements, together with an assumed Airy 
stress function, provide a method of determining a complete 
residual stress field.  The analysis has been applied to three 
examples where the residual stresses were introduced by 
turning process. The approach thus provides a useful method 
for experimental residual stress analysis, where usually the 
complete determination of the stress state at every point is 
often difficult, expensive and time consuming.   
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