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Unscented Grid Filtering and Smoothing
for Nonlinear Time Series Analysis

Nikolay Nikolaev, and Evgueni Smirnov

Abstract— This paper develops an unscented grid-based filter
and a smoother for accurate nonlinear modeling and analysis
of time series. The filter uses unscented deterministic sampling
during both the time and measurement updating phases, to ap-
proximate directly the distributions of the latent state variable. A
complementary grid smoother is also made to enable computing
of the likelihood. This helps us to formulate an expectation
maximisation algorithm for maximum likelihood estimation of
the state noise and the observation noise. Empirical investigations
show that the proposed unscented grid filter/smoother compares
favourably to other similar filters on nonlinear estimation tasks.

I. INTRODUCTION

Nonlinear time series modeling has practical applications

in various fields, such as automatic control, signal processing,

econometrics, etc. [17]. The rationale is that many real-world

time series assume descriptions by nonlinear discrete state-

space models. Such latent state models are learned through

filtering and smoothing. The filtering pass involves two steps:

a time step, which generates a state prior, and a measure-

ment step, which updates the posterior state distribution. The

smoothing pass computes backwards improved estimates of

the state posterior using information that has not been available

during the forward processing. Having algorithms to compute

the state posterior enables us to find the noise hyperparameters,

so as to obtain accurate forecasts from unseen inputs.

Nonlinear models are often processed using linearization

with the derivatives of the observation equation, and appli-

cation of the standard equations from the Extended Kalman

filter (EKF) [6]. Such model linearization through the output

derivatives with respect to the state, however, produces large

errors as it does not reflect the uncertainty in the hidden state,

and guarantees achieving only first-order accuracy. Higher

accuracy can be achieved using derivative free methods that

rely on sampling to approximate the state distribution. Among

the stochastic and deterministic sampling methods, current

research directs more attention to the deterministic sampling

methods as more efficient and accurate. The determinis-

tic sampling filtersing methods include Sigma Point Filters

(SPF) [19], like Unscented Kalman filters (UKF) [18], and

Central Difference Filters (CDF) [12], as well as Quadrature

Kalman Filters (QKF) [9], [1].
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Sigma point filters, relying on the unscented sampling tech-

nique [7], describe the model nonlinearities with accuracy up

to the second-order when the state density is Gaussian. During

the second measurement update step, however, SPF filters still

compute the posterior with the standard Kalman equations

through linearization of the observation model, which may

cause two problems: 1) as the model nonlinearities increase

the accuracy decreases; and 2) the linearization may lead to

a breakdown in the correlation between the state and the

observation, which prevents the state updating [20]. Moreover,

the SPF typically assume that the data are normally distributed,

while if they are skewed their accuracy decreases.

These issues can be addressed by designing grid filters [14]

that use numerical approximation through sampling during

both the time and the measurement updating steps. Grid-

based methods provide more flexibility as they attempt to

match directly the moments of the distributions of interest and

can perform well even on skewed distributions. The recent

one-step unscented Kalman filter (OUKF) [20] implements

this idea for low dimensional systems using Gauss-Hermite

quadratures. A shortcoming of the OUKF is the use of

Gaussian quadratures to determine the sampling points limits

its usefulness because it requires a lot of points to achieve

accurate approximation.

This paper elaborates an Unscented Grid Filter with a

Smoother (UGFS) for accurate estimation of the state mean

and variance. A distinguishing feature of UGFS is that during

both the time and measurement updates, as well as during

backward smoothing it approximates directly the distributions

using deterministic unscented sampling [7]. There are two

main contributions of the presented work: 1) it develops an

unscented grid filter and smoother for multidimensional inputs

and outputs, and 2) it derives an Expectation Maximisation

(EM) algorithm [16] for learning the state and observation

noise parameters. The formulation of the EM algorithm in-

volves design of a backward smoother to calculate the com-

plete data likelihood, which is necessary to find the noises. The

empirical investigations show that UGFS compares favorably

to similar filters on modeling nonstationary series and option

price modeling.

This paper is organized as follows. Section two introduces

the basics of nonlinear estimation and grid-based filtering.

Section three presents the unscented transform and elaborates

the novel filter. The next section four gives the EM algorithm

with the smoother. Section five offers the empirical study.

Finally a brief discussion and conclusions are provided.
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II. NONLINEAR ESTIMATION

The task of nonlinear estimation is to infer the dynamical

characteristics of a system that models given series of discrete

noisy observations D = {yt}T
t=1. The latent component of

such a system that describes its dynamics of the unobserved

underlying process is the state. We consider the following

nonlinear model:

xt = g(xt−1) + qt−1 /state equation/

yt = f(xt) + rt /observation equation/
(1)

where xt ∈ Rn is the state, yt ∈ Rm is the observation at time

t, g is the state transition function, qt−1 is the state noise, and

f is a nonlinear measurement function driven by observational

noise rt. The noises are assumed to be Gaussian with unknown

variances qt−1 ∼ N (0,Qt−1) and rt ∼ N (0,Rt).

A. Recursive Bayesian Inference

The analysis of sequential data described by such state-

space models in a probabilistic setting is performed using

the transition density p(xt|xt−1) ∼ N (xt|g(xt−1),Qt−1)
and the measurement density p(yt|xt) ∼ N (yt|f(xt),Rt−1).
Nonlinear estimation of this probabilistic representation is

carried out following the principles of recursive Bayesian

inference. According to it, the posterior distribution of the

latent state variable xt can be obtained through filtering using

the Bayes rule in the following way [8]:

p(xt|y1:t−1) =
∫

p(xt|xt−1)p(xt−1|y1:t−1)dxt−1 (2)

p(xt|y1:t) = C−1
t p(yt|xt)p(xt|y1:t−1) (3)

where Ct =
∫

p(yt|xt)p(xt|y1:t−1)dxt

where p(xt|y1:t) is the state posterior (filtering distribution),

p(xt|y1:t−1) is the state prior (predictive distribution), and

p(yt|xt) is the data likelihood.

Improved estimates of the posterior density p(xt|y1:T ), that

use subsequently arrived information (not available during the

forward pass), can be obtained through a backward smoothing

pass from the series end T down to the current point t < T .

The smoothing equations are deduced from the integral of the

joint distribution p(xt,xt+1|y1:T ) [8]:

p(xt|y1:T ) =
∫

p(xt,xt+1|y1:T )dxt+1

=
∫

p(xt|xt+1,y1:T )p(xt+1|y1:T )dxt+1(4)

which follows from the Markovian nature of the latent state

sequence. The smoothed posterior distribution p(xt|y1:T ) is

assumed Gaussian.

The problem is that these integrals can not be solved ana-

lytically for nonlinear models because they lead to untractable

nonstandard distributions (without a predominant mode). This

difficulty can be alleviated using sampling or linearization of

the observation model (using the Taylor’s expansion). The

linearization, however, tends to prodice large errors and does

not reflect the state uncertainty.

B. Grid-Based Estimation

Integral approximation in recursive modeling is often ac-

complished by deterministic or stochastic sampling [4], [14].

The deterministic sampling, considered as more accurate, com-

putes the integrals by discrete summation and averaging over a

finite set of carefully chosen grid points x(i)
t , i = 1, ..., N(t−1).

This enables us to evaluate recursively the probability densities

of interest by drawing sample points at each algorithmic step,

as they induce point-mass representations of these densities.

Following the principles of sequential Bayesian inference, a

grid filter can be defined by replacing the recursively computed

densities with their numerical approximation. This approach

leads to a grid filter that calculates iteratively the predictive

state distribution as follows:

p̂(xt|y1:t−1) =
N(t−1)∑

i=1

w
(i)
t p(x(i)

t |x(i)
t−1)p̂(x(i)

t−1|y1:t−1) (5)

and the corresponding filtering distribution also by weighted

summation:

p̂(xt|y1:t) = Ĉ−1
t w

(i)
t p(yt|x(i)

t )p̂(x(i)
t |y1:t−1) (6)

where Ĉt =
N(t)∑
i=1

w
(i)
t p(yt|x(i)

t )p̂(x(i)
t |y1:t−1)

where N(t) is the number of sampled states at time t, and w
(i)
t

are the weights for the samples x(i)
t .

There are various filtering techniques using finite sum

approximations of integrals, like Gauss-Hermite quadrature

filters [9], [20], [1], and Quasi-Monte Carlo filters. Although

these techniques place the samples on optimal locations, they

need a large number of points which grows exponentially with

the increase of the state dimension. An effective approach

to deterministic sampling for approximation that requires less

points is provided by the unscented transform [7].

III. UNSCENTED GRID FILTERING

The popular nonlinear filters relying on numerical inte-

gration are similar in doing the time updating by discrete

weighted summation of sampled states, obtained after passing

them through the particular state equation. They implement

differently however the measurement updating either in one or

in two consequtive steps: 1) with direct simulation of the state

posterior distribution; and 2) tackling the joint input output

density first, and next handling the likelihood and the prior.

Two step measurement updating is used by the filters from

the SPF family, like UKF, CDF and QKF. They draw sample

states (sigma-points) in order to approximate the joint input

output density, which in case of Gaussian noise leads to

tractable recursions for state adaptation. However when the

state density is highly skewed it does not perform well.

Moreover, if the inputs and the outputs are uncorrelated such

filters fail to update the state [20]. One-step measurement

updating is a more general strategy for filtering as it can handle

flexibly distributions of various forms [9].
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A. The Unscented Transform

The unscented transform [7] is a technique that enables us

to estimate the statistics of nonlinearly transformed random

variables, like the state in our nonlinear state-space model.

It suggests to pick samples from carefully selected locations

aroung the particular variable. The spread of the points is

determined in such a way so as to obtain a density estimate

with the same properties as the true unknown distribution. This

helps us to achieve higher accuracy (up to second order) of

modeling the mean and variance than in the case of attempting

Taylor approximations.

The numerically stable scaled version of the unscented

transform attains high fitting accuracy by computing symmet-

ric sigma-points by the following algebraic operations [7]:

x(0)
t−1 = x̂t−1

x(i)
t−1 = x̂t−1 +

[√
(L + λ)Pt−1

]
i
, i = 1, ..., L (7)

x(i)
t−1 = x̂t−1 −

[√
(L + λ)Pt−1

]
i
, i = L + 1, ..., 2L

where L is the state dimension, x̂t−1 is the previous mean

state, Pt−1 is the covariance, and the index i indicates the

i-th row of the matrix square root.

The state distribution is approximated by weighted averag-

ing over these sigma-points. Each sigma point is associated

with a corresponding weight Si,t−1 = {Wi,x
(i)
t−1}, i =

0, ..., 2L, and they are normalised
∑2L

i=0 Wi = 1. The weights

are computed with the following equations:

W (0)
m = λ/(λ + 1)

W (0)
c = λ/(λ + 1) + (1 − α2 + β) (8)

W (i)
m = W (i)

c = 1/(2(L + λ)), i = 1, ..., 2L

where α, β, and λ are scaling parameters.

The parameters α and β are chosen to control the spread of

the distribution. The spread is scaled with respect to the mean

of the distribution with the specific variable λ = α2(L+κ)−L,

using another parameter κ. This scaling parameter λ has to

be greater than or equal to zero in order to achieve positive

definite terms under the square root.

B. Time Updating

The time updating phase computes the predictive state

distribution p̂(xt|y1:t−1) = N (x̂t|t−1,Pt|t−1) which can be

written in matrix notation as follows [15]:

Xt−1|t−1 =
[
x(0)

t−1,x
(1)
t−1, ...,x

(2L)
t−1

]
Xt−1 = g

(
Xt−1|t−1

)
x̂t|t−1 = Xt−1wm (9)

Pt|t−1 = Xt−1WXT
t−1 (10)

W = (I − [wm, ...wm])Z (I − [wm, ...wm])T

Z = diag
(
W (0)

c , ..., W (2L)
c

)
where x̂t|t−1 is the mean state (filtering prior), Pt|t−1 is the

prior state covariance, I is the identity matrix, and T denotes

transpose of a matrix.

C. Measurement Grid Updating

A specific feature of the grid filter is that it performs

measurement updating by direct approximation of the state

posterior integral [9], [20], [10] using deterministic sampling.

The state posterior is obtained as a linear mixture in one step,

not in the typical two steps of linearized approximation of the

joint density through the derivatives of the observation model,

and, next, linear filtering with the Kalman equations. One-

step measurement updating is a more general filtering strategy

filtering as it can handle distributions of various forms.

We implement this idea through sampling from the prior

p̂(xt|y1:t−1) using again the unscented transform. Symmetric

points Si,t|t−1 = {Wi,x
(i)
t|t−1}, i = 0, ..., 2L, are drawn

around the predicted mean x̂t|t−1 as follows:

x(0)
t|t = x̂t|t−1

x(i)
t|t = x̂t|t−1 +

[√
(L + λ)Pt|t−1

]
i
, i = 1, ..., L (11)

x(i)
t|t = x̂t|t−1 −

[√
(L + λ)Pt|t−1

]
i
, i = L + 1, ..., 2L

where Pt|t−1 is obtained in the time updating phase.

The effect from the target at the particular moment on

the state posterior is absorbed through the likelihood. The

likelihood integral may be envisioned analytically tractable

for measurement functions with linear dependance on the

noise [20]. Therefore, we can evaluate the likelihood with the

outputs Yt produced by passing the sigma-points x(i)
t|t from

the state matrix Xt through the measurement function:

Xt =
[
x(0)

t|t ,x(1)
t|t , ...,x(2L)

t|t
]

Yt = f (Xt)wm (12)

p(yt|xt|t) =
∫

δ (Yt − yt) p(rt)drt (13)

where δ is the Kronecher delta. There are standard density

functions foe computing the probability p(yt|xt|t).
The mean and variance of the state posterior distribution

p̂(xt|y1:t) = N (x̂t|t,Pt|t) are finally obtained with the fol-

lowing expressions:

x̂t|t = Ĉ−1
t p(yt|xt|t)Xtwm (14)

Pt|t = XtWXT
t (15)

W = (I − [wm, ...wm])Z (I − [wm, ...wm])T

Z = Ĉ−1
t p(yt|xt|t)diag

(
W (0)

c , ..., W (2L)
c

)
where the normalizing constant is Ĉt = p(yt|xt|t)wm.

The UGF is a reliable algorithm as it can deal with data

coming from heavier than the normal (Gaussian) distribution

tails as well as from skewed distributions. It can handle also

situations with uncorrelated states and observations, therefore

it can learn a larger class of models than the original UKF.

IV. NONLINEAR EXPECTATION MAXIMISATION

The dynamic expectation Maximisation (EM) algo-

rithm [16] searches for the maximum of the log likelihood

log p(y1:T ,x1:T |Q,R), so as to find optimal noise parameters

Q and R. The algorithm alternates between expectation and
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maximisation steps. Since the likelihood has to be evaluated

with the complete data, the expectation step has to carry out

a forward pass followed by a backward pass over the series.

A. Unscented Grid Smoothing

The unscented Rauch-Tung-Striebel type algorithm com-

putes the smoothed density p(xt−1|xt,y1:T ) running back-

wards down to the begining of the time interval [13]. The

novelty here is that it evaluates the conditional distribution

p(xt,xt+1|y1:T ) through the use of deterministic sampling.

After performing unscented sampling:

Xt−1 =
[
x(0)

t−1,x
(1)
t−1, ...,x

(2L)
t−1

]
Xt = g (Xt−1) (16)

St−1 = Xt−1WXT
t ,Pt|t−1 = XtWXT

t (17)

the smoothed mean state and covariance matrix are computed

as follows:

Jt−1 = St−1

(
Pt|t−1

)−1
(18)

x̂t−1|T = x̂t−1|t−1 + Jt−1(x̂t|T − x̂t|t−1) (19)

Pt−1|T = Pt−1|t−1 + Jt−1(Pt|T − Pt|t−1)JT
t−1 (20)

which starts with x̂t|t = x̂T |T and Pt|t = PT |T .

In order to apply the EM algorithm it is necessary to

compute also the cross-covariance:

Ht−1 = Pt,t−1|T − Pt−1|t−1

Pt−1,t−2|T = Pt−1|t−1JT
t−2 + Jt−1Ht−1JT

t−1 (21)

which starts with PT,T−1|T = Pt−1|t−1.

B. Maximisation Step

The maximisation step aims at finding such state and

observation noises that maximise the expected log-likelihood

of the complete data set. The complete likelihood is1:

p(y1:T ,x1:T |Q,R) = p(x0)
T∏

t=1

p(xt|xt−1)
T∏

t=1

p(yt|xt) (22)

assuming that the noises are uncorrelated.

The optimisation is performed by taking the expectation 〈·〉
of the logarithm of the complete likelihood:

2 log p(y1:T ,x1:T |Q,R) =

−T log |Q| −
T∑

t=1

(xt − g(xt−1))Q−1(xt − g(xt−1))

−T log |R| −
T∑

t=1

(yt − f(xt))R−1(yt − f(xt)) (23)

where the constants are omitted.

1The theory of maximum likelihood estimation assumes that the avail-
able data for training (xt,yt), 1 ≤ t ≤ T are independent identically
distributed [16].

Fig. 1. Approximations of the UNGM series by the studied filters.

Fig. 2. Evolution of the weight noise covariance and the output noise
parameter during training.

Taking the derivatives of the expectation of the likelihood

〈log p(y1:T ,x1:T |Q,R)〉, equating to zero, and solving for Q
and R yields corresponding formulae for their updates:

A =
T∑

t=1

(
x̂t|T x̂T

t|T + Pt|T
)

B =
T∑

t=1

(
x̂t|T x̂T

t−1|T + Pt,t−1|T
)

Q = T−1
(
A − BBT

)
(24)

where x̂t|T and x̂t−1|T are the smoothed state vectors.

The likelihoods p(yt|xt) are approximated directly by finite

sum approximations using the unscented sigma-points gener-

ated by equation (11). This leads to the following formaula

for the observational noise covariance:

R = T−1
T∑

t=1

p(yt|xt)wm (25)

where wm = [W (0)
m ,W

(1)
m , ..., W

(2L)
m ]T , and p(yt|xt) =∫

δ (Yt − yt) p(rt)drt with Yt computed by (12).
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TABLE I

AVERAGED ERRORS AND STANDARD DEVIATIONS FROM 50 RUNS OVER

THE UNGM SERIES USING THE FILTERS TUNED TO MAKE 10 EM

ITERATIONS.

Filter NSE StDev

EKF 53.94 0.0522
UKF 46.75 0.0481
UGF 25.54 0.0267
RNF 26.21 0.0289

It should be noted that although the EM algorithm features

proven convergence to a maximum of the likelihood function,

this can be either local or global minimum when nonlinear

models are manipulated.

V. EMPIRICAL INVESTIGATIONS

Experiments were conducted to find out how the learning

potential of the developed UGF relates to similar filters from

previous research. There were considered tasks which were

already found to require nonlinear modeling and nonlinear

estimation. In order to facilitate comparisons with relevant

research we designed and implemented the following four

filters: classical EKF [6] as a baseline method, the UKF [18],

the UGF, and a Robust Nonlinear Filter (RNF) [2]. The RNF

also uses EM for hyperparameter reestimation, and can deal

with heavy tailed output noise.

Modelling Nonstationary Dynamics. The univariate non-

stationary growth model (UNGM) is a higly nonlinear bench-

marking model which is challenging for learning by standard

filtering algorithms [3]:

xt = αxt−1 + β
xt−1

1 + x2
t−1

+ γ cos(1.2(t − 1)) + ut

yt = 0.05x2
t + rt (26)

where the noises are Gaussian ut ∈ N (0, σ2
u) and rt ∈

N (0, σ2
r) with variances set to σ2

u = 0.1 and σ2
r =

3 sin(0.05t), the initial state is x0 = 0.1, α = 0.5, β = 25,

γ = 8. A sequence of T = 250 values was generated.

The cosine is independent of xt but depends on t, and so

it simulates time-varying noise.

We designed a multilayer perceptron (MLP) network with 6
hidden sigmoidal units and one summation output. The filters

were applied to find the weights (19 in total) using only

one input value xt to predict the output yt. All filters were

initialised with P0 = 1, [Q]ii = 10−2, and r = 1. The initial

weights were randomly drawn from a zero-mean Gaussian

with covariance one.

Table 1 provides the normalised squared errors (NSE) and

the corresponding variances averaged over independent 50
runs conducted with each filter. These normalized errors were

calculated with the formula: NSE =
√∑

t(yt − ŷt)2. The

results in Table 1 demonstrate that UGF outperforms the

other algorithms on this task, although it is only slightly

better than the RNF. It should be pointed out that RNF

uses approximations through linearisations with derivatives

like EKF, so one is inclined to think that avoiding simply

Fig. 3. Sequentially estimated interest rates by the studied filters, recorded
during runs with price K=2925.

Fig. 4. Sequentially estimated implied volatility by the studied filters,
recorded during runs with price K=2925.

linearisations of the nonlinear equation in filtering as done in

UKF is not a sufficient condition for accurate modelling.

Segments from all curves of the estimated mappings by

the studied filters are plotted in Figure 1. These curves are

recorded after one run with each of the filters. They show that

the UGF mapping is quite close the one generated by the RNF.

One can see that the UGF and RNF curves are closer to the

given curve especially at the peaks around the 85, 93 and 98

time instants, that is them seem to capture better the series

fluctuations.

Figure 2 depicts the changes of the weight covariance matrix

and the output noise parameter rt being re-estimated with the

EM algorithm. The curves are obtained during one run with the

UGF algorithm. Figure 2 may be envisoned as an illustration

of the convergence of the proposed dynamic EM algorithm.

Option Price Modelling. Option pricing is an problem

whose accurate solutions help to work efficiently with various

financial derivatives and hedge against risks [5]. It is a difficult

problem because of the nonstationary and stochastic behaviour

of the market price series.
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TABLE II

ACCURACY OF MODELING THE CALL/STRIKE PRICES, ACHIEVED BY THE

STUDIED FILTERS AFTER 10 EM ITERATIONS.

Call 2925 3025 3125 3225 3325

EKF 0.0509 0.0735 0.0614 0.0493 0.0289
UKF 0.0507 0.0733 0.0612 0.0492 0.0288
UGF 0.0482 0.0724 0.0602 0.0487 0.0283
RNF 0.0486 0.0728 0.0605 0.0485 0.0284

TABLE III

ACCURACY OF MODELING THE PUT/STRIKE PRICES, ACHIEVED BY THE

STUDIED FILTERS AFTER 10 EM ITERATIONS.

Put 2925 3025 3125 3225 3325

EKF 0.0363 0.0545 0.0624 0.0728 0.0752
UKF 0.0362 0.0544 0.0623 0.0726 0.0751
UGF 0.0345 0.0535 0.0613 0.0714 0.0748
RNF 0.0357 0.0541 0.0614 0.0713 0.0749

Assuming that prices follow a geometric Brownian motion,

the fair prices of European call C and put P options are given

by the Black-Scholes formulae2:

C = SΦ(d1) − Ke−rTmΦ(d1 −
√

vTm)
P = C + Ke−rTm − S (27)

d1 =
ln(S/K) + (r + 0.5v)Tm√

vTm

(28)

where S is the stock price, K is the strike price, r is the risk-

free interest rate, Tm is the time to maturity, v is the stock

return variance (volatility), and Φ(·) is the cumulative normal

distribution function.

The objective here is to model option prices by treating the

implied volatility and the interest rate as unobservables [11].

The volatility, the interest rate and the prices are assumed

Gaussian, but their noises are unknown. The filters were

applied with two inputs: the stock price divided by the strike

price, and the time to maturity. The outputs were the call and

put prices normalised also by the strike price.

There were taken five pairs of publicly available call and

put option contracts from the FTSE-100 index from February

till December 1994, with time to maturity December [3]. The

corresponding strike prices were 2925, 3025, 3125, 3225 and

3325. The initial noise covariance matrices were with entries

[R]ii = 10−5 and [Q]ii = 10−6.

The NSE errors on the call and put prices are given in Tables

2 and 3. They were measured as one-step ahead prediction

errors over the last 180 points from the series in order to

allow the state to mature.

These results show that UGF compares favourably to the

other studied here filters on this task, although on some series

it is not the best one. The RNF exhibits a very close behaviour

to UGF and it is better on the fourth series. The UKF and EKF

filters are competitive but clearly inferior in NSE sense.

Figure 3 and Figure 4 plot the interest rate and implied

volatility inferred using the call and put series with strike

2Strictly speaking the Black-Scholes formulae are valid upon several con-
ditions: no arbitrage opportunities, continuous trading, no dividents, constant
volatility and risk-free interest rate [5].

Fig. 5. Volatility smile (smirk) made by a 4-th order polynomial fit of the
UGF estimates taken at t=100.

Fig. 6. Volatility distribution smile (smirk) made as piecewise-line of the
UGF estimates taken at t=200.

price K = 2925. These figures reveal that the UGF and RNF

curves tend to oscillate more than the other. One reason for

achieving close results by UGF and RNF is that both are

Bayesian approaches whose application to seemingly peaked

posterior densities yields similar accuracy.

Figure 5 plots the implied volatility recorded at time step

t = 100 against the strike prices known as volatility smile.

Since UGF infers the distribution of the volatility, we can

also obtain the probability smile as a temporal sequence of the

densities. Figure 6 shows the volatility distributions computed

at each strike price at the end of training at time t = 200,

whose connection resembles a probability smile.
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VI. CONCLUSION

This paper presented an unscented grid filter and smoother

that perform finite sum approximations using function evalua-

tions, and do not require expensive computation of derivatives.

Being a grid-based method the unscented transform samples

the points evenly, and so it may eventually fail to achive very

high accuracy in regions of high density. Another problem

of UGFS is that the number of sampled points increases

dramatically with the state dimension.

The UGFS approximates both nonlinear functions in the

model by numerical integration, which is similar to Gaussian

Sum filters so it can be used to make such mixture filters. The

UGFS is general and it can be implemented also with Gauss-

Hermite quadratures, which may improve it by sampling more

points in cases when the state is low dimensional. UGFS can

be be successfull on practical tasks because it can work well

with nonlinear models and in relaxed circumstances, like mild

non-Gaussianity and non-stationarity.
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