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Abstract—The Goursat partial differential equation arises in 

linear and non linear partial differential equations with mixed 
derivatives. This equation is a second order hyperbolic partial 
differential equation which occurs in various fields of study such as 
in engineering, physics, and applied mathematics. There are many 
approaches that have been suggested to approximate the solution of 
the Goursat partial differential equation. However, all of the 
suggested methods traditionally focused on numerical differentiation 
approaches including forward and central differences in deriving the 
scheme. An innovation has been done in deriving the Goursat partial 
differential equation scheme which involves numerical integration 
techniques. In this paper we have developed a new scheme to solve 
the Goursat partial differential equation based on the Adomian 
decomposition (ADM) and associated with Boole’s integration rule to 
approximate the integration terms. The new scheme can easily be 
applied to many linear and non linear Goursat partial differential 
equations and is capable to reduce the size of computational work. 
The accuracy of the results reveals the advantage of this new scheme 
over existing numerical method.  
 

Keywords—Goursat problem, partial differential equation, 
Adomian decomposition method, Boole’s integration rule.  

I. INTRODUCTION 
OST of the phenomena that arise in several sciences and 
engineering fields can be described by partial 

differential equations. The Goursat problem is a partial 
differential equation hyperbolic type that arises in several 
areas of application. In physics for example, supersonic flows 
[8], reacting gas flow [3] and sonic barrier [7]. In engineering 
such as, trajectory generation for the N-Trailer [9], steering of 
mobile robot [6], isotropic plate [5] and micro differential 
operator [11]. Usually, these models relate with space and 
time derivatives and need to be solved in order to gain a better 
insight into the underlying physical problems. Many of these 
equations uses analytical methods and hence it cannot be 
utilized. Thus, numerical approximations need to be used. 

In the last decades, several numerical techniques have been 
proposed to handle the Goursat partial differential equation, 
among them are Runge-Kutta, finite difference, finite 
elements, variational iteration method and two dimensional 
differential transform (see [12]). 
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However it is known that many of the techniques only focus 
on numerical differentiation method in deriving the scheme. In 
this paper, we develop a new scheme by using numerical 
integration method for solving Goursat partial differential 
equation.  

Numerical integration is used to describe the numerical 
solution of differential equation and arises in the numerous 
applications such as in reformulation of mathematical 
problems, convert mathematical problems to ordinary or 
partial differential equation into algebraic equation, calculate 
the integral transform. It can also be used in fundamental 
computation technique and applied statistical computation [4]. 
The Boole’s integration rule is based on the evaluating integral 
at equal subinterval and efficient in solving several numerical 
problems. 

ADM was introduced and developed by [1] and have been 
proved to be reliable, accurate and effective in the both of 
analytical solution and numerical approximation to the 
Goursat partial differential equation. This method can easily 
handle a wide class of linear or non linear, ordinary or partial 
differential equation, and integral equation. 

Based on the high performance of ADM, we develop a new 
scheme by using ADM and associated with Boole’s 
integration rule to solve (linear, derivative linear and non 
linear) Goursat partial differential equations. The accuracy of 
the proposed scheme is compared with the existing scheme in 
the literature.  

II.  THE GOURSAT PROBLEM AND ADM 
The Goursat problem arises in partial differential equation 

with mixed derivatives. The standard form of Goursat problem 
[13] is 
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The established finite difference scheme is based on 

arithmetic mean averaging of functional values and is given by 
[13] 
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where h  denotes the grid size. 
 

If the ADM is used, we obtain [14]: 
In operators form, the left hand side of general Goursat 

problem (1) becomes: 
 

,),,,,(),( yxyx uuuyxfyxuLL =                                        
(3) 

 
where 
 

 
.,

y
L

x
L yx ∂

∂
=

∂
∂

=                                                             (4) 

 
The inverse operators 1−

xL  and 1−
yL  can be defined as 
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The Goursat problem (1) involves two distinct differential 

operators xL  and yL , then the two inverse integral operator 
1−

xL and 1−
yL  will be used. Applying 1−

yL  to both sides of (3) 
gives 
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Then, equation (6) becomes 
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where 
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or equivalently 
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 Then, operating with 1−

xL  to both sides of (9) will yield: 
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Now we substitute 
 

          ,),0(),(),(1 yuyxuyxuLL xx −=−
              and   

          

              .)0,0()0,()0,(1 uxuxuLL xx −=−              (11) 
 

into (10), then 
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The ADM derivation of Goursat partial differential equation 

(1) given as follows 
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The equation (13) can be rewrite as 
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III. ADM ASSOCIATED WITH BOOLE’S INTEGRATION RULE 
FOR THE GOURSAT PROBLEM 

By indexing the independent variables, (14) becomes 
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where n  is a number of subinterval in the numerical 
integration formula. 

The Boole’s integration rule with four segments is as 
follows [2] 
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  By letting 4=n  into (15), we obtain 
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Utilize the integration (16) to approximate the double 
integral in scheme (17) to obtain: 
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(18) 
 
where .hk =  

Substitute approximation (18) into scheme (17). Then, the 
new scheme can be written as: 
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IV. NUMERICAL EXPERIMENTS 
We consider the following three Goursat problems 
Problem 1: Linear (homogeneous). 
 

     
..y,.x

,e,y)u(

,e)u(x,

,uu

y

x

xy

210210
0

0

≤≤≤≤
=

=

=

                        (20) 

 
The analytical solution is .),( yxeyxu +=  
Problem 2: Linear (derivative). 
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The analytical solution is .1),( yxexyyxu ++−−=  

Problem 3: Non-linear. 
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The analytical solution is: 
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These problems were considered as [14], [10] and [13] 
respectively. We developed MATLAB program for the 
application of schemes (2) and (19) to problems (20), (21) and 
(22). The graphs and results presented below are relative 
errors and average relative errors at several selected grid 
points respectively. 

Results of Problem 1: 

 
Fig. 1 Graph of relative errors for scheme (2) at h = 0.025 

 
Fig. 2 Graph of relative errors for scheme (19) at h = 0.025 

 
TABLE I 

RESULT OF AVERAGE RELATIVE ERRORS 

Grid size (h) Scheme (2) Scheme (19) 

0.020 1.3346202 x 10-5 1.1528706 x 10-6 
0.012 4.7492517 x 10-6 2.4810242 x 10-7

0.010 3.2885079 x 10-6 1.4344073 x 10-7 
0.006 1.1769762 x 10-6 3.0922875 x 10-8 
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Results of Problem 2: 

 
Fig. 3 Graph of relative errors for scheme (2) at h = 0.020 

 

 
Fig. 4 Graph of relative errors for scheme (19) at h = 0.020 

 
TABLE II 

RESULT OF AVERAGE RELATIVE ERRORS 

Grid size (h) Scheme (2) Scheme (19) 

0.040 1.2239002 x 10-4 5.6937761 x 10-5 
0.030 6.8389269 x 10-5 4.0549595 x 10-5 
0.025 4.6943413 x 10-5 3.2972447 x 10-5 
0.024 4.3595431 x 10-5 3.1840536 x 10-5 

 
Results of Problem 3: 

 
Fig. 5 Graph of relative errors for scheme (2) at h = 0.040 

 
 

 
Fig. 6 Graph of relative errors for scheme (19) at h = 0.040 

 
TABLE III 

RESULT OF AVERAGE RELATIVE ERRORS 

Grid size (h) Scheme (2) Scheme (19) 

0.025 3.7624478 x 10-5 1.7847299 x 10-6 
0.020 2.4003895 x 10-5 9.1161289 x 10-7 
0.016 1.5323754 x 10-5 4.6584645 x 10-7 
0.010 5.9631796 x 10-6 1.1339828 x 10-7 

 
As can be seen from the graphs and results of the average 

relative errors, for all Goursat problems with the grid sizes 
investigated, the new scheme (19) is more accurate than the 
standard scheme (2). 

V.  CONCLUSION 
In this paper, we have developed a new scheme based on 

ADM associated with a well known Boole’s integration rule 
for Goursat partial differential equations (linear, derivative 
linear and non linear). Our new scheme preserves the linearity 
of the Goursat problems (20) and (21). The numerical results 
we obtained confirm the superiority of the new scheme (19) 
over the established scheme (2). 
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