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Abstract—In process control applications, above 90% of the 
controllers are of PID type. This paper proposed a robust PI 
controller with fractional-order integrator. The PI parameters were 
obtained using classical Ziegler-Nichols rules but enhanced with the 
application of error filter cascaded to the fractional-order PI. The 
controller was applied on steam temperature process that was 
described by FOPDT transfer function. The process can be classified 
as lag dominating process with very small relative dead-time. The 
proposed control scheme was compared with other PI controller 
tuned using Ziegler-Nichols and AMIGO rules. Other PI controller 
with fractional-order integrator known as F-MIGO was also 
considered. All the controllers were subjected to set point change and 
load disturbance tests. The performance was measured using Integral 
of Squared Error (ISE) and Integral of Control Signal (ICO). The 
proposed controller produced best performance for all the tests with 
the least ISE index. 

 
Keywords—PID controller, fractional-order PID controller, PI 

control tuning, steam temperature control, Ziegler-Nichols tuning.  

I. INTRODUCTION 

ID controller is still dominating the feedback control 
applications until today especially for PI control [1], [2]. 

In process control applications, more than 90% of the 
controllers are of PI(D) type [1]. Its application is adequate for 
wide control problems with modest performance requirements. 
PI is normally used for a system that can be approximated by a 
first-order system. Otherwise, PID will be more appropriate. 
PID control is not suitable for all processes compared to PI 
which is more universal [3]. Other than system order, the 
relative dead-time can be used to determine which type of 
controller to be used. Relative dead-time is a ratio of dead-
time and time constant of the open-loop response.  

The performance of the closed-loop system mainly depends 
on the value of P, I, and D gain. The most popular tuning 
technique is the Ziegler-Nichols that had been proposed since 
1942 [4] but was still largely applied in its original form or 
with some modifications. The rules were simple because not 
requiring process transfer function. The rules only require 
information on the process gain, dead-time and lag-time which 
can be obtained from an s-shaped step response. However, the 
rule often produced poor robustness since it uses very little 
information about the plant to be controlled [5]. Ziegler and 

 
This work was partly supported by UiTM Research fund (600-RMI/DANA 

5/3/RIF (660/2012).  
Mazidah Tajjudin, Norhashim Mohd Arshad and Ramli Adnan are with 

the Faculty of Electrical Engineering, Universiti Teknologi MARA, Shah 
Alam, Malaysia (corresponding author e-mail: mazidah@salam.uitm.edu.my).  

Nichols presented two methods, a process reaction curve 
method and frequency response method. The rules were 
developed based on simulation performed on a large number 
of different processes to formulate the general PID tuning 
rules. Modified versions of Ziegler-Nichols were proposed by 
Cohen-Coon and Chien, Hrones and Reswick [6] where more 
process parameters were considered. 

Later on, Astrom et al. [3] had improvised the Ziegler-
Nichols rules using robust loop shaping method. The main 
idea was to come up with simple rules that are robust to load 
disturbance. The design looked into maximization of the 
integral gain with a constraint on maximum load disturbance-
to-output sensitivity, Ms. This method was known as M-
constrained integral gain optimization (MIGO) that worked 
very well for PID tuning over wide range of processes [5]. 
Substantial studies were done over large batch of processes 
including delay-dominated, lag-dominated, and integrating 
response which are typically encountered in process control. 
Based on the outcomes, the tuning rules were drawn by finding 
relations between the controller parameters and the process 
parameters. The rules were then known as approximated 
MIGO (AMIGO). 

About a decade ago, the PID controller had been 
generalized with the implementation of non-integer integral 
and differentiation proposed by Podlubny in 1999 [7]. The 
PID was generalized in the form of PIλDµ involving an 
integrator of order λ and differentiator of order µ of less than 
1. The new structure known as fractional-order PID was 
acknowledged to improved the performance of the feedback 
control loop [8]. The concept of fractional-order control 
(FOC) is represented by fractional-order differential equations. 
Theoretical framework regarding fractional derivative and 
integral had been established by Liouville, Riemann, Eular, 
and Lagrange since the 19th century [9]. The knowledge had 
been transferred into control engineering by Tustin [10] to 
control the position of massive object in 1958. This was 
followed by Manabe [11] around 1960. However, the FOC 
application was not widely incorporated in control engineering 
then, due to lack of theory and computational limitation [12].  

The interest in fractional-order system has been developed 
progressively later on. A new control structure known as 
CRONE controller had been proposed by Oustaloup [13]. 
CRONE is the acronym for Commande Robuste d’Ordre Non 
Entier in French which means non-integer robust control. The 
motivation of CRONE design is to achieve iso-damping 
(constant phase) characteristics that can tolerate the gain and 
parameter variations. The improvement of the first-generation 
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and second-generation CRONE has been made to allow 
fractional order controller of complex number [14]. 

The fractional-order PID had been demonstrated by many 
researchers to give better performance compared to the integer 
PID. This new technique is proven to provide more flexibility 
and ability to enhance modeling and control of systems’ 
dynamics [15]. Based on a survey documented by Machado 
[16], the new development and new possibilities in this area is 
aggressively discussed. Integer-order approximation for 
fractional-order system had been investigated since 1960s in 
other research area such as chemistry and mechanical systems 
[17]. Some approximation techniques are based on continued 
fraction expansion (CFE), curve fitting or identification 
methods and power series expansion (PSE). Oustaloup’s 
Recursive Approximation (ORA) is among the most popular 
approximation technique. The technique used recursive poles 
and zeros distribution within specified frequency range to 
assimilate the frequency response of the fractional-order 
transfer function. 

Recently, more studies had been concentrated on the 
method for FO-PID tuning [18], [19]. Generally, the design 
specifications were looking for an infinite gain margin and 
constant phase margin around the cross-over frequency to 
obtain robust control towards gain variations [20]. The 
solutions were then obtained by solving a linear numerical 
optimization problems as had been reported in [21], [22]. 
Another tuning approach was by utilizing the Ziegler-Nichols 
tuning rules based on information of its frequency and step 
response. The rules were successfully applied by [23] and [24] 
in their studies. A practical tuning for FO-PI was developed by 
Yangquan et al. [25] using the same idea proposed in MIGO. 
They were developing general tuning rules for PI controller 
with suggested fractional order of the integrator, α. The rules 
were finalized after comprehensive simulations over various 
types of processes. 

This study demonstrated the application of Ziegler-Nichols 
tuning rules for IO-PI and extended to the FO-PI. The output 
performance in steady-state was improved by incorporating an 
error filter with very small cutoff frequency to increase the 
system’s type. The performance was compared to the IO-PID 
using AMIGO rules and F-MIGO for the FO-PI. The 
experimental results from steam temperature control of a 
distillation plant were provided. This paper is organized in the 
following order: Section II will explained theoretical 
development of fractional-order PID and its approximation. 
Section III discussed on the PID tuning rules proposed by 
Ziegler-Nichols and the concept of AMIGO and F-MIGO 
which is the latest development in this area. The steam 
distillation model is also discussed. Section IV presents the 
results obtained from the experiments over steam temperature 
control. Finally, Section V concludes the findings from this 
study. 

II. FRACTIONAL-ORDER PID CONTROLLER  

Integer-order approximation for fractional-order system had 

been investigated since 1960s in other research area such as 
chemistry and mechanical systems [17]. Some approximation 
techniques are based on continued fraction expansion (CFE), 
curve fitting or identification methods and power series 
expansion (PSE). Oustaloup’s Recursive Approximation 
(ORA) is among the most popular approximation technique. 
The technique used recursive poles and zeros distribution 
within specified frequency range to assimilate the frequency 
response of the fractional-order transfer function. 

This method is based on the approximation of a function in 
the form: 
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However, the approximation of H(s) is only valid within the 

boundary of low cut-off and high cut-off frequency defined as 
[ωl : ωh]. From (2), N represents the number of poles and 
zeros which has to be selected beforehand. Large value of N 
permitted good degree of freedom in approximation but 
increased the computational complexity. On the other hand, 
small value of N provides less degree of freedom in 
approximation and resulting appearance of ripple in gain and 
phase behavior. Proper rules for selecting these parameters 
were discussed in [26]. The assignment of low and high 
frequency band limitations could somehow avoid the use of 
infinite numbers of rational transfer function besides limiting 
the high frequency gain of the derivative effect [27].  

The poles and zeros of the approximated function are 
calculated using the following recursive equations:  
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Applications of fractional-order models in control theory 
had been considered only after two decades. The idea of 
fractional-order controller was first proposed by Oustaloup 
through Commande Robuste d’Ordre Non Entier (CRONE 
which means non-integer robust control) controller in 1991. 
Later on, Podlubny [7] had initiated the fractional order PID in 
the form of PIλDµ in 1999 that involving an integrator of order 
λ and differentiator of order µ of less than 1. The studies on 
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PID with fractional power of λ and µ were conducted by many 
researchers to demonstrate better performance compared to the 
integer PID. The transfer function of FO-PID is given by 
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where Kp, Ti, and Td are controller gain while λ and µ are the 
integral and differential power in non-integer number. 
Fractional PID is the generalization of integer PID such that: 
• If λ =1 and µ=1, we obtain a classical PID. 
• If λ=1 and µ=0, we obtain a PI controller. 
• If λ=0 and µ=1, we obtain a PD controller. 
• If λ=0 and µ=0, we obtain a P controller 

Hence, if λ and µ were set to arbitrary value between 0 and 
1, the controller can be configured to behave within these four 
possibilities [19], [23], [28]. 

 

 
Fig. 1 Fractional PID control space 

 

This is the main advantage of the FO-PID. Other than that, 
FO-PID was acknowledged by many researchers to provide 
better control especially to a class of fractal system. 
Furthermore, FO-PID is less sensitive to changes in process 
parameters and the controller parameters itself. There were 
five parameters that can be tuned instead of three as in the 
conventional version and thus, more design specifications can 
be achieved from the λ and µ adjustment [18]. 

The frequency response for differentiator and integrator 
using ORA was shown in Figs. 2 and 3 respectively. The 
magnitude and phase of each function related to fractional 
power λ is given by, 
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where m represents the magnitude of λ and µ and will be used 
throughout this paper. The gain and phase can be adjusted 
between ±20 dB/dec and ±90º. This characteristic enable for 
more accurate design of the PID controller. 
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Fig. 2 Bode diagram of ORA on sm 
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Fig. 3 Bode diagram of ORA on s-m 

III. PID TUNING RULES  

The controller design was applied to steam temperature 
control system which exhibit non-linear properties over the 
whole range. But, in this study, the operating range was limited 
from 80°C - 100°C where the output response is closely 
approximated with FOPDT system with s-shaped step 
response. This section explains the PI tuning rules outlined by 
Ziegler-Nichols, AMIGO, and F-MIGO for FO-PI. The 
proposed method of error filter with adjustable n was also 
explained and proved to provide good performance even 
though with Z-N tuning rules for the PI controller. 

A. Ziegler-Nichols (Reaction Curve Method) 

This study applied Ziegler-Nichols PID tuning based on a 
process reaction curve. It should be noted that, these rules 
were only accurate for a process with an s-shaped step 
response or otherwise will not produce satisfactory response. 
The PID parameters can be acquired from the step response 
test and no process model is required. The tuning rules are 
given by (6) and (7). 
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Information about the process gain (Kp), process dead-time, 

L and process time constant, T can be obtained from the 
process reaction curve. These parameters are described in Fig. 
4.  

 

 

Fig. 4 Process reaction curve of steam temperature in hydro-steam 
distillation process 

 

The controller parameters are then calculated according to 
the rules given in (6) and (7) for Kp=4.5, L=25sec, and T=280 
sec. This information creates an FOPDT system as follows: 
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For the standard PID structure, the following PI controller 

was obtained: 
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B. FO-PI (Z-N) with Error Filter 

In order to improve the overall closed-loop response, this 
study proposed an FO-PI controller with the P and I obtained 
from the Ziegler-Nichols rules given above. Based on 
simulation over a case study of an FOPDT-type system, the PI 
performance can be improved a lot with fractional power of I.  

Simulation was done for λ = -0.1,-0.5, and -0.9. A general 
observation made was that the FO-PI produced a significant 
steady-state error even though it can improve the overshoot of 
the response. This is due to the absence of pole at the origin 
when the integrator of fractional-order was approximated 
using ORA method. This issue had been discussed in [12], 
[21], [29] with proposals on how to minimized the error.  

After some simulation studies, the error filter proposed by 
Feliu-Batlle et al. [21] was considered. The original error filter 
is in the following form: 

s

ns
sGe

+
=)(

         
(10) 

 
where n being a small value so that high frequency 
specifications were maintained and the system gain will not 
altered drastically. This approach was applied in this research 
for steady-state error compensation but with some 
modifications.  

The effect of the error filter can be described through Bode 
plots of the integrator terms and the composite PI controller 
given in Fig. 5. The frequency response was for λ=-0.5. From 

the figure, the error filter just increased the system’s type and 
maintains all other behaviors around specified frequency 
range. The overall magnitude specifications can be achieved 
by a simple gain adjustment. 

 

 

Fig. 5 Bode plot of F-PI with error filter when λ= -0.5 
 

This study proposed a modification such that the value of n 
is adjustable with respect to λ. The movement of zero has 
significant impact on the phase margin. For λ=0.9, great 
improvement in %OS was observed when n=0.003 compared 
to n= 0.03. The summary was presented in Table II with best 
performance was obtained when λ=0.1 and n=0.03. This 
setting will be demonstrated with experiment in Result and 
Discussion section.  

 
TABLE II 

EFFECT OF CUT-OFF FREQUENCY OF ERROR FILTER  

λ k n 
Settling 
time (s) 

OS (%) 
Steady-state 

error (ºC) 

-0.1 0.79 0.3 239 46.93 0 

-0.1 0.79 0.03 - 30.07 0.84 

-0.5 0.32 0.03 224 40.00 0 

-0.9 0.1 0.03 294 65.47 0 

-0.9 0.1 0.003 301 50.07 0 

C. PI-AMIGO  

This rule was proposed by Astrom and Hagglund in [3], 
[30]. They tried to improve the basic rules given by Ziegler 
and Nichols by introducing a classification index of relative 
dead-time, τ. τ is an essential parameter that can better 
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described the type of processes and is highly influencing the 
controller performance. τ was defined as: 
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where L and T is the dead-time and lag- time respectively.  

Each process can be classified as delay dominated when 
τ>0.5, lag dominated when τ < 0.5 and balanced system when 
τ = 0.5. The controller parameters were determined from a test 
batch including over 134 different processes based on 
correlation with relative dead-time, τ of the process. The PI-
AMIGO tuning rules were given by (12) and (13) [31]: 
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D. F-MIGO  

F-MIGO is an extension of MIGO applied for a fractional-
order PIλ for normal first-order system (FOPDT). This rule 
was designed by Yang Quan et al. [25] to accommodate the 
design of FO-PI controller which include the determination of 
λ. The tuning rules also considering the relationship between 
normalized controller parameters and the relative dead-time, τ. 
Based on evaluation to numbers of FOPDT process models 

with different τ, the F-MIGO proposed the following rules 
with respect to τ:  
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where λ is the fractional-order, τ is the relative dead-time, Kp 
is the process gain, T is the time constant, K is the 
proportional gain, and Ti is the integral time constant. By 
determining τ, the value of λ, K, and Ti can be calculated using 
(14)-(16). Their study suggested that a system with very small 
dead-time may not require full integrator to give good closed-
loop performance. 

IV.  RESULTS AND DISCUSSIONS  

This section provides experimental results of the PI together 
with FO-PI that were tuned using the methods previously 

discussed. The fractional integrator was approximated using 
ORA with N = 4, ωL=0.01 rad/s and ωH=10000 rad/s. The 
approximate transfer function was multiplied with gain, k so 
that the Bode magnitude crossed 0 dB (unity gain) at 1 rad/s. 
All the controller settings are summarized in Table III where m 
is the fractional-order, k is the gain to reset the fractional 
integrator to 0dB, and n is the cut-off frequency of the error 
filter. The study was conducted on steam temperature process 
described by (8) with τ = 0.08 (lag dominating process). 
Ziegler-Nichols rules proposed large gain whereas, the rules 
based on MIGO maximizing the integral time of almost twice 
from the Ziegler-Nichols. 

 
TABLE III 

CONTROLLER SETTINGS  

# Controller K Ti λ k n 

1 PI (Z-N) 2.19 82.5    

2 PI-AMIGO 0.7 161.53    

3 F-MIGO 0.82 112.28 -0.7 0.19  

4 FO-PI (Z-N) with filter 2.19 82.5 -0.1 0.79 0.03 

A. Set Point Change 

The control performance was evaluated during set point 
change and load disturbance test. The set point was changed 
from 80°C to 85°C with no changes in other parameter. The 
performance was compared using Integral of Squared Error 
(ISE) and Integral of Control Error (ICO) for both cases. 

Fig. 6 shows step change response by PI (Z-N). The closed-
loop response did not follow the given set point and keep 
oscillating without damping. The control signal acting in an 
ON/OFF manner as the controller gain is high and the control 
signal was constrained by the 0 to 5 volt voltage. Furthermore, 
the system fails to respond immediately to the control signal 
since the lag time is very large (280 sec). This result shows the 
incompetency of the Z-N tuning rules to be applied directly on 
every type of process. 
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Fig. 6 PI-ZN set point change (a) temperature (b) control volt 
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Fig. 7 shows a modified version of Z-N rules by considering 
the effect of dead-time and lag in the tuning rules. The 
response produced by PI-AMIGO shows better performance 
with the ability in tracking the set point but it still producing 
high overshoot.  
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(b) 

Fig. 7 PI-AMIGO set point change (a) temperature, (b) control volt 
 

The closed-loop performance was improved by introducing 
a fractional term in the integrator. But as discussed earlier, the 
approximation causes significant error during steady-state but 
the overshoot was noticeably reduced. This result agrees with 
Yang Quan et al. that lag dominating process did not require a 
full integrating controller. 
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(b) 

Fig. 8 F-MIGO set point change (a) temperature, (b) control volt 
 

Fig. 9 shows the output response using the proposed 
technique. The steady-state error was eliminated by the error 
filter and the response was faster with negligible overshoot. 
The fractional order was much smaller (0.1) than the proposed 
value (0.7) for system with very small dead-time (< 0.1). But, 

what happens if smaller order is used? This result shows that 
smaller order produced a better response for a system with 
smaller τ. And, the results also proved that the Z-N tuning 
rules were applicable to the FO-PI controller setup where the 
performance can be improved with the fractional order 
integrator with some modifications. 
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(b) 

Fig. 9 FO-PI with error filter set point change (a) temperature, (b) 
control volt 

B. Load Disturbance 

Load disturbance rejection is also important to evaluate the 
controller’s robustness. In this case, the disturbance was 
introduced by increasing the water volume by 1 liter. This will 
reduce the water temperature and hence, the steam temperature 
it generates. PI-ZN controller was oscillating and did not 
response to the changes. PI-AMIGO can reject the disturbance 
with sluggish response in the beginning. 
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Fig. 10 PI-ZN load disturbance response (a) temperature, (b) control 
volt 
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Fig. 11 PI- AMIGO load disturbance response (a) temperature, (b) 
control volt 

 

F-MIGO controller shows iso-damping property but still 
produces steady-state error. The best output response was 
observed in the proposed controller as shown in Fig. 13. 
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Fig. 12 F-MIGO load disturbance response (a) temperature, (b) 
control volt 

 

2000 2500 3000 3500 4000 4500 5000
70

80

90

100

Time,sec

T
e
m
p
e
ra
tu
re
,d
e
g
C

FO-PI (Z-N) m=-0.1;n=0.03

Water

Steam

 

(a) 
 

2000 2500 3000 3500 4000 4500 5000

0

2

4

Time,sec

C
o
n
tr
o
l,
v
o
lt

FO-PI (Z-N) m=-0.1;n=0.03

 

(b) 

Fig. 13 FO-PI with error filter load disturbance response (a) 
temperature, (b) control volt 

 

The overall performance of each controller can be measured 
from their performance index of error (ISE) and the efficiency 
of the controller output. The data was listed in Table IV and 
the best performance was shaded. During set point change, 
controller #4 gave best output in terms of less error index but 
controller #3 produce less control effort. The performance was 
the same during load disturbance test. These results can be 
validated by comparing Figs. 12 and 13. F-MIGO gave 
smoother control but it compromising the output response. On 
the other hand, FO-PI with the error filter has higher P gain for 
more aggressive control effort but better output performance. 

 
TABLE IV 

CONTROLLER PERFORMANCE INDICES 

# Controller 
Set point change Load disturbance 

ISE(x104) ICO ISE(x104) ICO 

1 PI-ZN 4.765 3382 12.34 5365 

2 PI-AMIGO 1.338 3784 1.639 6543 

3 F-MIGO 0.951 3517 1.806 6178 

4 
FO-PI (ZN) 

with error filter 
0.254 3552 0.5671 6610 

V. CONCLUSIONS  

This study compares three PI controllers that tuned using 
Ziegler-Nichols, AMIGO and F-MIGO with the proposed FO-
PI tuned with Ziegler-Nichols but was cascaded with an error 
filter to eliminate steady-state error. All the controllers were 
evaluated experimentally to a steam temperature process which 
is of FOPDT type with very small τ. The evaluation includes 
robustness against set point change and load disturbance test. 
The evaluation was made in terms of ISE and ICO for output 
and controller efficiency. In general, the proposed controller 
shows best performance but it demands higher control effort as 
compared to F-MIGO that measured by ICO index. 
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