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Fourier spectral method for analytic continuation
Zhenyu Zhao and Lei You

Abstract—The numerical analytic continuation of a function
f(z) = f(x + iy) on a strip is discussed in this paper. The data
are only given approximately on the real axis. The periodicity of
given data is assumed. A truncated Fourier spectral method has been
introduced to deal with the ill-posedness of the problem. The theoretic
results show that the discrepancy principle can work well for this
problem. Some numerical results are also given to show the efficiency
of the method.
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I. I NTRODUCTION

The problems of analytic continuation are frequently en-
countered in many practical applications [10], [11], [13],[14].
In general, this problem is ill-posed and several techniques
have been developed for it. In this paper we consider the
problem of analytic continuation of periodic analytic function
f(y) = f(x+ iy) on a strip domain in the complex plane

Ω = {z = x+ iy ∈ C |x ∈ R, |y| ≤ y0, y0 is a positive constant} ,
(1)

where i is the imaginary unit. The data are only given
on the real axis, i.e.,f(z) |y=0 = f(x) =: f0 is known
approximately and we would extendf analytically from this
data to the whole domainΩ. This problem has been considered
by a mollification regularization method in [9]. In [7], [8],
Fourier method and Tikhonov regularization method has been
developed for solving this problem.

In this paper, the Fourier spectral method will be used to
deal with the problem in the case off0 is periodic on the real
axis. The idea of this paper is analogy to the one in [7]. But in
[7], the periodicity of the functions did not be utilized. Soonly
a prior parameter can be used for it and the numerical results
in [7] show that the method is sensitive for the choice of the
parameter. In this paper, We will point out that the discrepancy
principle can be used as the stop rule benefit from the accuracy
of Fourier spectral method to periodic functions.

This paper is organized as follows. Some preliminary ma-
terials which will be introduced in section 2. In section 3, the
developed method and corresponding convergence results will
be established. Some numerical results are given in section4
to show the efficiency of the new method.

II. PRELIMINARIES

In this section, we present some preliminary materials which
will be used throughout the paper. LetΛ = (0, 2π) and

L
p(Λ) = { v | v is measurable and‖v‖Lp < ∞},
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where

‖v‖Lp =

(∫

Λ

|v(x)|p dx

) 1
p

, 1 ≤ p < ∞.

In particular,L2(Λ) is a Hilbert space with the inner product

〈u, v〉L2(Λ) =

∫

Λ

u(x)v(x) dx.

For simplicity, denote the norm‖v‖L2 by ‖v‖.
The set of functionseilx, l = 0,±1, . . . , is an orthogonal

system inL2(Λ). The Fourier transformation of a function
v ∈ L2(Λ) is

v =

∞∑

l=−∞

v̂le
ilx (2)

wherev̂ is the Fourier coefficient,

v̂l =
1

2π

∫

Λ

v(x)e−ilx
dx, l = 0,±1, . . . (3)

The Parseval equality holds, namely

‖v‖2 = 2π

∞∑

−∞

|v̂l|
2
. (4)

Now let N be any positive integer andVN be the set of all
trigonometric polynomials of degree at mostN , i.e.,

VN = span
{
e
ilx | |l| ≤ N

}
. (5)

TheL2− orthogonal projectionPN : L2(Ω) → VN is such a
mapping that for anyv ∈ L2(Ω),

〈v − PNv, φ〉 = 0, ∀φ ∈ VN . (6)

Indeed,
PNv =

∑

|l|≤N

v̂le
ilx
. (7)

We assume that

f(·+ iy) ∈ L
2(Λ) for |y| ≤ y0. (8)

Because the functionf(x) is analytic inΩ, the following series
converges inΩ:

f(z) = f(x+ iy)

=
∑∞

n=0
f(n)(x)

n! (iy)n

=
∑∞

n=0
(iy)n

n! Dnf(x)

|y| ≤ y0. (9)

whereDn = ∂n

∂xn . If the dataf(· + iy) ∈ L2(Λ) for all y,
0 ≤ y ≤ y0 and we let

f̂
y
l =

1

2π

∫

Λ

f(x+ iy)e−ilx
dx, l = 0,±1, . . . (10)
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then we can get

f̂
y
l =

1

2π

∫

Λ

∞∑

n=0

(iy)n

n!
D

n
f(x)e−ilx

dx

=
1

2π

∞∑

n=0

∫

Λ

(iy)n

n!
D

n
f(x)e−ilx

dx

=
1

2π

∞∑

n=0

∫

Λ

(iy)n

n!
(il)nf(x)e−ilx

dx

=
1

2π

∞∑

n=0

(
(−yl)n

n!

∫

Λ

f(x)e−ilx
dx

)

= e−ylf̂0
l

(11)

that is to say

f(z) = f(x+ iy) =

∞∑

l=−∞

e
−yl

f̂
0
l e

ilx =: Ayf0 (12)

Lemma 1: Let f(· + iy) ∈ L
2(Λ), ∀|y| ≤ y0, then for any

|y| ≤ y0,

‖f(·+iy)−Ay(PNf0)‖ ≤ e
N(|y|−y0) (‖f(· + iy0)‖ + ‖f(· − iy0)‖) . (13)

Proof:

‖f(·+ iy)−AyPNf0‖
2

= 2π
(∑

l>N |e−ylf̂l|
2 +

∑
l<−N |e−ylf̂l|

2
)

≤ 2π
(∑

l>N |e|yl|f̂l|
2 +

∑
l<−N |e|yl|f̂l|

2
)

≤ 2πe2N(|y|−y0)
(∑

l>N |el(y0−|y|)e|yl|f̂l|
2

+
∑

l<−N |el(y0−|y|)e|yl|f̂l|
2
)

≤ 2πe2N(|y|−y0)
(∑

l>N |ey0lf̂l|
2 +

∑
l<−N |ey0lf̂l|

2
)

≤ e2N(|y|−y0) (‖f(·+ iy0)‖ + ‖f(· − iy0)‖) .

III. T HE METHOD AND CONVERGENCE RESULTS

We assume the exact dataf0 and the measured dataf δ

belong toL2(Λ) and satisfies

‖f0 − f
δ‖ ≤ δ, (14)

whereδ > 0 denotes the noisy level.
In addition, note that for any ill posed problem some a priori

assumption on the exact solution is needed and necessary,
otherwise, the convergence of the regularization approximate
solution will not be obtained or the convergence rate can be
arbitrary slow[3]. In this paper, we will assume there hold the
following a priori bounds

‖f(·+ iy0)‖ ≤ E, (15)

and

‖f(· − iy0)‖ ≤ E, (16)

We want to find a functionϕδ such that

lim
δ→0

‖ f(·+ iy)−Ayϕ
δ ‖ = 0, ∀|y| ≤ y0.

In the following, we propose a scheme to attain the function
ϕδ from the perturbed dataf δ. We can give the approximate
function as follows:

ϕ
δ
m(x) = Pmf

δ =
∑

|l|≤m

f̂
δ
l e

ilx (17)

wheref̂ δ
l are the Fourier coefficients off δ andm = m(δ, f δ

0 )
is determined by the discrepancy principle

‖ (I − Pm)f δ ‖ ≤ τδ < ‖ (I − Pm−1)f
δ ‖ (18)

with τ > 1.
In the following, we will prove a convergence estimate.
Theorem 2: Suppose thatϕδ

m is defined by (17) and (18)
with τ > 1 and the conditions (14) and (15),(16)are hold, then
for any |y| ≤ y0, we have

‖ f(·+iy)−Ayϕ
δ
m ‖ ≤ E

|y|
y0

[

(τ + 1)
y0−|y|

y0 + 2
|y|
y0 e

|y|(τ − 1)
|y|
y0

]

δ
y0−|y|

y0 .

(19)

Proof:
Suppose0 < y ≤ y0, the proof for the case−y0 ≤ y < 0

will be analogous. From (18), we can get

‖(I − Pm)f‖ = ‖(I − Pm)f δ + (I − Pm)(f − f δ)‖
≤ ‖(I − Pm)f δ‖+ ‖(I − Pm)(f − f δ)‖
≤ (τ + 1)δ.

And the following inequality is hold by Hölder inequality

‖ f(·+ iy)−AyPmf ‖2 =
∑

|l|>m |e−ylf̂0
l |

2

=
∑

|l|>m e−2yl|f̂0
l |

2y
y0 |f̂0

l |
2(y0−y)

y0

≤
(∑

|l|>m e−2y0l|f̂0
l |

2
) y

y0
(∑

|l|>m |f̂0
l |

2
) y0−y

y0

≤ E
2y
y0 ‖(I − Pm)f‖

2(y0−y)

y0 .

(20)

Hence

‖ f(·+ iy)−AyPmf ‖ ≤ E
y
y0 (τ + 1)

(y0−y)

y0 δ
(y0−y)

y0 . (21)

On the other hand,

‖Pm−1f − f‖ = ‖(Pm−1f
δ − fδ) − (I − Pm−1)(f − fδ)‖

≥ ‖Pm−1f
δ − fδ‖ − ‖(I − Pm−1)(f − fδ)‖.

(22)

From (18), we have

‖Pm−1f
δ − f

δ‖ > τδ, (23)

and it is obvious that

‖(I − Pm−1)(f − f
δ)‖ ≤ δ.

So we can obtain

‖Pm−1f − f‖ ≥ (τ − 1)δ. (24)

From Lemma 1

(τ − 1)δ ≤ ‖Pm−1f − f‖ ≤ 2e(1−m)y0E. (25)

So we can obtain

m ≤
ln 2E − ln(τ − 1)δ

y0
+ 1.
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TABLE I
RESULTS OFEXAMPLE 1 WITH y = 0.5

δ1 m
‖ f(·+iy)−Ayϕ

δ
m ‖

‖f(·+iy)‖

‖ f(·+iy)−Ayϕ
δ
m ‖∞

‖f(·+iy)‖∞

10−1 3 0.0101 0.0102
10−2 4 0.0018 0.0022
10−3 5 0.0003 0.0004
10−4 6 6.12e-5 0.0001

TABLE II
RESULTS OFEXAMPLE 1 WITH y = 1

δ1 m
‖ f(·+iy)−Ayfδ ‖

‖f(·+iy)‖

‖ f(·+iy)−Ayfδ ‖∞
‖f(·+iy)‖∞

10−1 3 0.0573 0.0390
10−2 4 0.0161 0.0135
10−3 5 0.0042 0.0037
10−4 6 0.0008 0.0008

Therefore

‖ f(·+ iy)−Ayϕ
δ
m ‖

= ‖ f(·+ iy)−AyPmf ‖+ ‖AyPmf −Ayϕ
δ
m ‖

≤ E
y
y0 (τ + 1)

y0−y

y0 δ
y0−y

y0 + ‖AyPm(f − f δ) ‖

≤ E
y
y0 (τ + 1)

y0−y

y0 δ
y0−y

y0 + emyδ

≤ E
y
y0

[
(τ + 1)

y0−y

y0 + 2
y
y0 ey(τ − 1)

−y
y0

]
δ

y0−y

y0 .

IV. N UMERICAL IMPLEMENTATION

In this section, we present numerical results of one example
to check the efficiency of the method. . In all the cases, the
discretization knots areti = ih, i = 1, · · · , N , with N = 256,
h = 1/N and . The perturbed discrete data are given by

f
δ(ti) = f(ti) + ǫi,

where{ǫi}Ni=0 are generated by Functionrandn(N+1, 1)×δ1

in Matlab. All examples are computed by using Matlab with
parametersτ = 1.01.

Example 1 The function

f(z) = exp(cos(z)).

is a periodic analytic function with

f(z)|y=0 = exp(cos(x))

TheL2–norm relative errors and the maximum–norm rela-
tive errors are given in the tables 1, 2 to verify the theoretical
results. Fig. 1 is also given to compare qualitatively the
computed solutions and the exact ones. All of the results show
that the new method works well.

V. CONCLUTION

In this paper the truncated Fourier spectral method is used
to give a stable analytic continuation of the periodic analytic
function. The theoretical and numerical results indicate that the
discrepancy principle can work well if we can find a suitable
approximation even for severely ill-posed problem.
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Fig. 1. Results of Example1 withδ = 0.1
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